matmul_v2_op_mlu.cc 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/matmul_v2_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
static void Mul(const framework::ExecutionContext& ctx, const Tensor& X,
                const Tensor& Y, Tensor* Out) {
  Out->mutable_data<T>(ctx.GetPlace());

  MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
                                  CNNL_NOT_PROPAGATE_NAN);
  MLUCnnl::OpTensor(ctx, mul_op_desc.get(), x_desc.get(), GetBasePtr(&X),
                    y_desc.get(), GetBasePtr(&Y), out_desc.get(),
                    GetBasePtr(Out), ToCnnlDataType<T>());
}

template <typename T>
static void MatMul2D(const framework::ExecutionContext& ctx, const Tensor& X,
                     const Tensor& Y, Tensor* Out, const bool trans_x,
                     const bool trans_y) {
  Out->mutable_data<T>(ctx.GetPlace());

  MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  MLUCnnl::Matmul(ctx, trans_x, trans_y, x_desc.get(), GetBasePtr(&X),
                  y_desc.get(), GetBasePtr(&Y), out_desc.get(),
                  GetBasePtr(Out));
}

template <typename T>
static void MatMulND(const framework::ExecutionContext& ctx, const Tensor& X,
                     const Tensor& Y, Tensor* Out, const bool trans_x,
                     const bool trans_y) {
  if (!Out->initialized()) {
    Out->mutable_data<T>(ctx.GetPlace());
  }

  MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  MLUCnnl::BatchMatmul(ctx, trans_x, trans_y, x_desc.get(), GetBasePtr(&X),
                       y_desc.get(), GetBasePtr(&Y), out_desc.get(),
                       GetBasePtr(Out));
}

template <typename T>
static void ReduceDims(const framework::ExecutionContext& ctx,
                       const std::vector<int64_t>& dims,
                       const std::vector<int64_t>& bcast_dims, const Tensor& in,
                       Tensor* out) {
  std::vector<int64_t> axes;
  int64_t size = bcast_dims.size();
  int64_t diff = bcast_dims.size() - dims.size();
  for (int64_t i = 0; i < size; ++i) {
    if (i < diff) {
      axes.push_back(i);
      continue;
    }
    if (bcast_dims[i] > dims[i - diff]) {
      axes.push_back(i);
    }
  }
  out->mutable_data<T>(ctx.GetPlace());

  MLUCnnlTensorDesc in_desc(in, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());
  MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType<T>());

  std::vector<int> reduce_dims(axes.begin(), axes.end());
  MLUCnnlReduceDesc reduce_desc(reduce_dims, CNNL_REDUCE_ADD,
                                ToCnnlDataType<T>(), CNNL_NOT_PROPAGATE_NAN,
                                CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES);

  MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduce_desc.get(), nullptr,
                  in_desc.get(), GetBasePtr(&in), 0 /*indices_size*/, nullptr,
                  nullptr, out_desc.get(), GetBasePtr(out));
}

template <typename T>
class MatMulV2MLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<framework::Tensor>("X");
    auto* Y = ctx.Input<framework::Tensor>("Y");
    auto* Out = ctx.Output<framework::Tensor>("Out");
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

113 114 115
    std::vector<int64_t> x_dims = pten::vectorize(X->dims());
    std::vector<int64_t> y_dims = pten::vectorize(Y->dims());
    std::vector<int64_t> out_dims = pten::vectorize(Out->dims());
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();

    // Case 1: [K] x [K] = [1]
    // Equal: [1, K] x [K, 1] = [1, 1] => [1]
    const bool all_one_dim = (x_ndim == 1 && y_ndim == 1);
    if (all_one_dim) {
      Out->Resize({1, 1});
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
132
      x_temp.Resize(pten::make_ddim(x_dims));
133 134 135 136 137
      x_ndim = 2;
      // matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim`
      if (out_dims.size() < y_dims.size()) {
        std::vector<int64_t> temp_out_dims(out_dims.begin(), out_dims.end());
        temp_out_dims.insert(temp_out_dims.end() - 1, 1);
138
        Out->Resize(pten::make_ddim(temp_out_dims));
139 140 141 142
      }
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
143
      y_temp.Resize(pten::make_ddim(y_dims));
144 145 146 147 148
      y_ndim = 2;
      // matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim`
      if (out_dims.size() < x_dims.size()) {
        std::vector<int64_t> temp_out_dims(out_dims.begin(), out_dims.end());
        temp_out_dims.push_back(1);
149
        Out->Resize(pten::make_ddim(temp_out_dims));
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
      }
    }

    const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
    if (trans_y) {
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1]));
    } else {
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2]));
    }

    if (x_ndim == 2 && y_ndim == 2) {
      // Case 2: [M, K] x [K, N] = [M, N]
      MatMul2D<T>(ctx, x_temp, y_temp, Out, trans_x, trans_y);
    } else {
      // Case 3: [B, M, K] x [K, N] =  [B, M, N]
      // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
      MatMulND<T>(ctx, x_temp, y_temp, Out, trans_x, trans_y);
    }

179 180
    if (pten::vectorize(Out->dims()) != out_dims) {
      Out->Resize(pten::make_ddim(out_dims));
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    }
  }
};

template <typename T>
class MatMulGradV2MLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<framework::Tensor>("X");
    auto* Y = ctx.Input<framework::Tensor>("Y");
    auto* dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dY = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    const bool trans_x = ctx.Attr<bool>("trans_x");
    const bool trans_y = ctx.Attr<bool>("trans_y");

197 198 199
    std::vector<int64_t> x_dims = pten::vectorize(X->dims());
    std::vector<int64_t> y_dims = pten::vectorize(Y->dims());
    std::vector<int64_t> out_dims = pten::vectorize(dOut->dims());
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int out_ndim = out_dims.size();

    // Case 1: [K] x [K] = [1]
    if (x_ndim == 1 && y_ndim == 1) {
      if (dX) {
        Mul<T>(ctx, *dOut, *Y, dX);
      }
      if (dY) {
        Mul<T>(ctx, *dOut, *X, dY);
      }
      return;
    }

    // Resize dim 1 to 2
    Tensor x_temp, y_temp, dout_temp;
    x_temp.ShareDataWith(*X);
    y_temp.ShareDataWith(*Y);
    dout_temp.ShareDataWith(*dOut);
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin(), 1);
      out_dims.insert(out_dims.end() - 1, 1);
223 224
      x_temp.Resize(pten::make_ddim(x_dims));
      dout_temp.Resize(pten::make_ddim(out_dims));
225 226 227 228 229 230
      x_ndim = 2;
      out_ndim += 1;
    }
    if (y_ndim == 1) {
      y_dims.push_back(1);
      out_dims.push_back(1);
231 232
      y_temp.Resize(pten::make_ddim(y_dims));
      dout_temp.Resize(pten::make_ddim(out_dims));
233 234 235 236 237 238 239
      y_ndim = 2;
      out_ndim += 1;
    }

    // Case 2: [M, K] x [K, N] = [M, N]
    if (out_ndim == 2) {
      if (dX) {
240
        dX->Resize(pten::make_ddim(x_dims));
241 242 243 244 245 246 247 248
        if (trans_x) {
          MatMul2D<T>(ctx, y_temp, dout_temp, dX, trans_y, true);
        } else {
          MatMul2D<T>(ctx, dout_temp, y_temp, dX, false, !trans_y);
        }
        dX->Resize(X->dims());
      }
      if (dY) {
249
        dY->Resize(pten::make_ddim(y_dims));
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        if (trans_y) {
          MatMul2D<T>(ctx, dout_temp, x_temp, dY, true, trans_x);
        } else {
          MatMul2D<T>(ctx, x_temp, dout_temp, dY, !trans_x, false);
        }
        dY->Resize(Y->dims());
      }
      return;
    }

    // Case 3: [B, M, K] x [K, N] =  [B, M, N]
    // Case 4: [B, M, K] x  [B, K, N] = [B, M, N]
    std::vector<int64_t> x_bcast_dims(out_ndim, 1);
    std::vector<int64_t> y_bcast_dims(out_ndim, 1);
    std::copy(out_dims.begin(), out_dims.end() - 2, x_bcast_dims.begin());
    std::copy(out_dims.begin(), out_dims.end() - 2, y_bcast_dims.begin());
    std::copy(x_dims.end() - 2, x_dims.end(), x_bcast_dims.end() - 2);
    std::copy(y_dims.end() - 2, y_dims.end(), y_bcast_dims.end() - 2);

    if (dX) {
      Tensor dx_temp(X->type());
      if (x_dims != x_bcast_dims) {
272
        dx_temp.Resize(pten::make_ddim(x_bcast_dims));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
      } else {
        dX->mutable_data<T>(ctx.GetPlace());
        dx_temp.ShareDataWith(*dX);
      }

      if (trans_x) {
        MatMulND<T>(ctx, y_temp, dout_temp, &dx_temp, trans_y, true);
      } else {
        MatMulND<T>(ctx, dout_temp, y_temp, &dx_temp, false, !trans_y);
      }

      if (x_dims != x_bcast_dims) {
        ReduceDims<T>(ctx, x_dims, x_bcast_dims, dx_temp, dX);
      }
    }

    if (dY) {
      Tensor dy_temp(Y->type());
      if (y_dims != y_bcast_dims) {
292
        dy_temp.Resize(pten::make_ddim(y_bcast_dims));
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
      } else {
        dY->mutable_data<T>(ctx.GetPlace());
        dy_temp.ShareDataWith(*dY);
      }

      if (trans_y) {
        MatMulND<T>(ctx, dout_temp, x_temp, &dy_temp, true, trans_x);
      } else {
        MatMulND<T>(ctx, x_temp, dout_temp, &dy_temp, !trans_x, false);
      }

      if (y_dims != y_bcast_dims) {
        ReduceDims<T>(ctx, y_dims, y_bcast_dims, dy_temp, dY);
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_MLU_KERNEL(matmul_v2, ops::MatMulV2MLUKernel<float>,
                       ops::MatMulV2MLUKernel<plat::float16>);
REGISTER_OP_MLU_KERNEL(matmul_v2_grad, ops::MatMulGradV2MLUKernel<float>,
                       ops::MatMulGradV2MLUKernel<plat::float16>);