test_imperative_basic.py 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23
import paddle.fluid.dygraph_utils as dygraph_utils
24
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
25
import paddle
26 27


28
class MyLayer(fluid.Layer):
29 30
    def __init__(self):
        super(MyLayer, self).__init__()
31 32

    def forward(self, inputs):
M
minqiyang 已提交
33
        x = fluid.layers.relu(inputs)
34
        self._x_for_debug = x
X
Xin Pan 已提交
35 36 37
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
38 39


40
class MLP(fluid.Layer):
41 42
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
43
        self._linear1 = None
44 45 46 47 48 49 50 51 52 53 54 55 56 57
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
58 59

    def forward(self, inputs):
60 61
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
62 63 64 65
        x = fluid.layers.reduce_sum(x)
        return x


66
class SimpleRNNCell(fluid.Layer):
67 68
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
69 70 71
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
72 73
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
74 75 76 77

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
78
        self._i2h_w = None
79 80
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
81 82 83
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
84 85
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
86 87 88
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
89 90
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
91 92 93 94 95
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
96 97 98 99 100 101
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
125
        hidden = self._helper.append_activation(hidden, act='tanh')
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
145
            attrs={'keep_dim': False,
146 147 148 149 150
                   'reduce_all': True})

        return reduce_out, hidden


151
class SimpleRNN(fluid.Layer):
152 153
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
154 155 156 157 158 159
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
160 161

    def forward(self, inputs):
J
JiabinYang 已提交
162
        outs = list()
J
JiabinYang 已提交
163 164
        pre_hiddens = list()

165
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
166 167 168 169 170 171
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
172
        for i in range(self.seq_len):
J
JiabinYang 已提交
173 174 175
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
176 177
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
178

J
JiabinYang 已提交
179
        return outs, pre_hiddens
J
JiabinYang 已提交
180 181


M
minqiyang 已提交
182
class TestImperative(unittest.TestCase):
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def test_functional_dygraph_context(self):
        self.assertFalse(fluid.dygraph.enabled())
        fluid.enable_dygraph()
        self.assertTrue(fluid.dygraph.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = fluid.dygraph.base.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        fluid.disable_dygraph()
        self.assertFalse(fluid.dygraph.enabled())
        with fluid.dygraph.guard():
            self.assertTrue(fluid.dygraph.enabled())
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(fluid.dygraph.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
206 207 208
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

    def test_functional_paddle_imperative_dygraph_context(self):
209 210 211
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
212
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
213
        var_inp = paddle.to_variable(np_inp)
214 215 216 217 218
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
219 220 221 222 223 224 225 226 227 228 229 230
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
        var_inp = paddle.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out2 = out.numpy()
        out.backward()
        dy_grad2 = mlp._linear1.weight.gradient()
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
231
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
232 233
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

234 235 236 237 238 239 240 241 242 243 244
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
245 246
        t = fluid.Tensor()
        t.set(x, fluid.CPUPlace())
247 248 249 250 251 252
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)
253
            tmp6 = fluid.core.VarBase(t)
254 255 256 257 258 259

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))
260
            self.assertTrue(np.array_equal(x, tmp6.numpy()))
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    def test_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

280 281 282 283 284 285
    def test_paddle_imperative_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
286
            with paddle.no_grad():
287 288 289 290 291 292 293 294 295 296 297
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

M
minqiyang 已提交
298 299
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
300
        with fluid.dygraph.guard():
M
minqiyang 已提交
301 302
            inputs = []
            for _ in range(10):
303 304 305
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
306 307
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
308
            loss.backward()
309 310 311
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
312 313 314
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
315 316 317 318 319 320
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

321 322
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
323 324 325
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
326

327 328 329 330 331 332 333 334 335
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
336
                assert type(e) == core.EnforceNotMet
337 338 339 340

            try:
                new_variable.backward()
            except Exception as e:
341
                assert type(e) == core.EnforceNotMet
342 343 344 345

            try:
                new_variable.clear_gradient()
            except Exception as e:
346
                assert type(e) == core.EnforceNotMet
347 348 349 350 351 352 353 354 355 356 357 358 359

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
360
                assert type(e) == core.EnforceNotMet
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
378
            self.assertTrue(new_var.persistable)
379

M
minqiyang 已提交
380
    def test_layer(self):
L
lujun 已提交
381
        with fluid.dygraph.guard():
M
minqiyang 已提交
382 383
            cl = core.Layer()
            cl.forward([])
384
            l = fluid.Layer("l")
M
minqiyang 已提交
385 386 387 388
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
389 390
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
391
            var_inp.stop_gradient = False
392
            l = MyLayer()
M
minqiyang 已提交
393 394
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
395
            dy_out = x.numpy()
L
lujun 已提交
396
            x.backward()
397
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
398

399 400
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
401
            var_inp2.stop_gradient = False
402
            l2 = MyLayer()
403 404 405 406 407 408 409 410
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
411 412 413
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
414
            l = MyLayer()
M
minqiyang 已提交
415 416 417 418 419 420 421 422 423 424 425 426
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
427 428
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
429 430 431

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
432 433
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
434
            mlp = MLP(input_size=2)
M
minqiyang 已提交
435
            out = mlp(var_inp)
436
            dy_out = out.numpy()
L
lujun 已提交
437
            out.backward()
438
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
439

440 441
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
442
            mlp2 = MLP(input_size=2)
443 444 445 446 447
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
448
            dy_grad2 = mlp2._linear1.weight.gradient()
449

M
minqiyang 已提交
450 451 452
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
453
            mlp = MLP(input_size=2)
M
minqiyang 已提交
454 455
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
456
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
457 458 459 460 461 462 463 464 465 466
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
467 468
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
469 470

        params = mlp.parameters(True)
471 472 473 474
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
475 476 477
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
478 479
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
480 481
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
482
    def test_dygraph_vs_static(self):
483 484
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
485 486 487

        # dynamic graph
        with fluid.dygraph.guard():
488 489 490
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
491 492 493
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
494
            dygraph_result = x.numpy()
X
Xin Pan 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
528 529
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
530 531 532
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
533 534 535 536 537
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
538 539
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
540
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
541
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
542
            outs, pre_hiddens = simple_rnn.forward(var_inp)
543
            dy_out = outs[3].numpy()
L
lujun 已提交
544
            outs[3].backward()
545 546 547
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
548

549 550 551
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
552
            simple_rnn2 = SimpleRNN()
553 554 555 556 557 558 559 560 561
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
562 563 564
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
565
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
566 567 568 569 570 571 572 573 574 575
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
576

M
minqiyang 已提交
577 578 579 580
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
581 582 583 584
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
585

586 587 588 589 590 591 592
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

593 594 595 596 597 598 599 600 601 602 603 604 605
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
631
            self.assertTrue(np.allclose(res1.numpy(), res2.numpy()))
632

633 634 635 636 637 638 639 640 641 642
    def test_append_activation_in_dygraph3(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        helper = LayerObjectHelper(fluid.unique_name.generate("test"))
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


660 661 662 663 664 665 666 667 668
class TestDygraphGuardWithError(unittest.TestCase):
    def test_without_guard(self):
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np.zeros([10, 10]))
        with self.assertRaisesRegexp(TypeError,
                                     "Please use `with fluid.dygraph.guard()"):
            y = fluid.layers.matmul(x, x)


669 670
if __name__ == '__main__':
    unittest.main()