test_imperative_basic.py 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23
import paddle.fluid.dygraph_utils as dygraph_utils
24
import paddle
25 26


27
class MyLayer(fluid.Layer):
28 29
    def __init__(self):
        super(MyLayer, self).__init__()
30 31

    def forward(self, inputs):
M
minqiyang 已提交
32
        x = fluid.layers.relu(inputs)
33
        self._x_for_debug = x
X
Xin Pan 已提交
34 35 36
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
37 38


39
class MLP(fluid.Layer):
40 41
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
42
        self._linear1 = None
43 44 45 46 47 48 49 50 51 52 53 54 55 56
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
57 58

    def forward(self, inputs):
59 60
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
61 62 63 64
        x = fluid.layers.reduce_sum(x)
        return x


65
class SimpleRNNCell(fluid.Layer):
66 67
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
68 69 70
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
71 72
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
73 74 75 76

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
77
        self._i2h_w = None
78 79
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
80 81 82
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
83 84
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
85 86 87
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
88 89
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
90 91 92 93 94
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
95 96 97 98 99 100
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
124
        hidden = self._helper.append_activation(hidden, act='tanh')
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
144
            attrs={'keep_dim': False,
145 146 147 148 149
                   'reduce_all': True})

        return reduce_out, hidden


150
class SimpleRNN(fluid.Layer):
151 152
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
153 154 155 156 157 158
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
159 160

    def forward(self, inputs):
J
JiabinYang 已提交
161
        outs = list()
J
JiabinYang 已提交
162 163
        pre_hiddens = list()

164
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
165 166 167 168 169 170
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
171
        for i in range(self.seq_len):
J
JiabinYang 已提交
172 173 174
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
175 176
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
177

J
JiabinYang 已提交
178
        return outs, pre_hiddens
J
JiabinYang 已提交
179 180


M
minqiyang 已提交
181
class TestImperative(unittest.TestCase):
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    def test_functional_dygraph_context(self):
        self.assertFalse(fluid.dygraph.enabled())
        fluid.enable_dygraph()
        self.assertTrue(fluid.dygraph.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = fluid.dygraph.base.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        fluid.disable_dygraph()
        self.assertFalse(fluid.dygraph.enabled())
        with fluid.dygraph.guard():
            self.assertTrue(fluid.dygraph.enabled())
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(fluid.dygraph.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
205 206 207
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

    def test_functional_paddle_imperative_dygraph_context(self):
208 209 210
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
211
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
212
        var_inp = paddle.to_variable(np_inp)
213 214 215 216 217
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
218 219 220 221 222 223 224 225 226 227 228 229
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
        var_inp = paddle.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out2 = out.numpy()
        out.backward()
        dy_grad2 = mlp._linear1.weight.gradient()
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
230
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
231 232
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

233 234 235 236 237 238 239 240 241 242 243
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
244 245
        t = fluid.Tensor()
        t.set(x, fluid.CPUPlace())
246 247 248 249 250 251
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)
252
            tmp6 = fluid.core.VarBase(t)
253 254 255 256 257 258

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))
259
            self.assertTrue(np.array_equal(x, tmp6.numpy()))
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    def test_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

279 280 281 282 283 284
    def test_paddle_imperative_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
285
            with paddle.no_grad():
286 287 288 289 290 291 292 293 294 295 296
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

M
minqiyang 已提交
297 298
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
299
        with fluid.dygraph.guard():
M
minqiyang 已提交
300 301
            inputs = []
            for _ in range(10):
302 303 304
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
305 306
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
307
            loss.backward()
308 309 310
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
311 312 313
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
314 315 316 317 318 319
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

320 321
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
322 323 324
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
325

326 327 328 329 330 331 332 333 334
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
335
                assert type(e) == core.EnforceNotMet
336 337 338 339

            try:
                new_variable.backward()
            except Exception as e:
340
                assert type(e) == core.EnforceNotMet
341 342 343 344

            try:
                new_variable.clear_gradient()
            except Exception as e:
345
                assert type(e) == core.EnforceNotMet
346 347 348 349 350 351 352 353 354 355 356 357 358

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
359
                assert type(e) == core.EnforceNotMet
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
377
            self.assertTrue(new_var.persistable)
378

M
minqiyang 已提交
379
    def test_layer(self):
L
lujun 已提交
380
        with fluid.dygraph.guard():
M
minqiyang 已提交
381 382
            cl = core.Layer()
            cl.forward([])
383
            l = fluid.Layer("l")
M
minqiyang 已提交
384 385 386 387
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
388 389
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
390
            var_inp.stop_gradient = False
391
            l = MyLayer()
M
minqiyang 已提交
392 393
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
394
            dy_out = x.numpy()
L
lujun 已提交
395
            x.backward()
396
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
397

398 399
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
400
            var_inp2.stop_gradient = False
401
            l2 = MyLayer()
402 403 404 405 406 407 408 409
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
410 411 412
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
413
            l = MyLayer()
M
minqiyang 已提交
414 415 416 417 418 419 420 421 422 423 424 425
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
426 427
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
428 429 430

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
431 432
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
433
            mlp = MLP(input_size=2)
M
minqiyang 已提交
434
            out = mlp(var_inp)
435
            dy_out = out.numpy()
L
lujun 已提交
436
            out.backward()
437
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
438

439 440
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
441
            mlp2 = MLP(input_size=2)
442 443 444 445 446
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
447
            dy_grad2 = mlp2._linear1.weight.gradient()
448

M
minqiyang 已提交
449 450 451
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
452
            mlp = MLP(input_size=2)
M
minqiyang 已提交
453 454
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
455
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
456 457 458 459 460 461 462 463 464 465
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
466 467
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
468 469

        params = mlp.parameters(True)
470 471 472 473
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
474 475 476
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
477 478
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
479 480
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
481
    def test_dygraph_vs_static(self):
482 483
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
484 485 486

        # dynamic graph
        with fluid.dygraph.guard():
487 488 489
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
490 491 492
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
493
            dygraph_result = x.numpy()
X
Xin Pan 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
527 528
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
529 530 531
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
532 533 534 535 536
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
537 538
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
539
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
540
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
541
            outs, pre_hiddens = simple_rnn.forward(var_inp)
542
            dy_out = outs[3].numpy()
L
lujun 已提交
543
            outs[3].backward()
544 545 546
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
547

548 549 550
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
551
            simple_rnn2 = SimpleRNN()
552 553 554 555 556 557 558 559 560
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
561 562 563
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
564
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
565 566 567 568 569 570 571 572 573 574
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
575

M
minqiyang 已提交
576 577 578 579
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
580 581 582 583
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
584

585 586 587 588 589 590 591
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

592 593 594 595 596 597 598 599 600 601 602 603 604
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
630
            self.assertTrue(np.allclose(res1.numpy(), res2.numpy()))
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


649 650 651 652 653 654 655 656 657
class TestDygraphGuardWithError(unittest.TestCase):
    def test_without_guard(self):
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np.zeros([10, 10]))
        with self.assertRaisesRegexp(TypeError,
                                     "Please use `with fluid.dygraph.guard()"):
            y = fluid.layers.matmul(x, x)


658 659
if __name__ == '__main__':
    unittest.main()