dropout_op_xpu.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/platform/xpu_header.h"
namespace paddle {
namespace operators {

#ifdef PADDLE_WITH_XPU
static std::map<int, float*> mask_data_tables;
static const int max_data_size = 32 * 1024 * 1024;
static std::mutex s_mask_data_table_lock;
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    const auto* x_data = x->data<T>();
    auto* y_data = y->mutable_data<T>(context.GetPlace());
    float dropout_prob = context.Attr<float>("dropout_prob");
    auto dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    float* mask_data_table = nullptr;
    PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true,
                      platform::errors::InvalidArgument(
                          ("Input(Seed) not supported on XPU")));
    if (!context.Attr<bool>("is_test")) {
      int dev_id =
          BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
      int prop = static_cast<int>(dropout_prob * 100);
      int is_upscale = (dropout_implementation == "upscale_in_train");
      /* mask_data_tables key contains 3 part:
       *  | 31-16  | 15-8 | 7-0        |
       *  | dev_id | prob | is_upscale |
       */
      int index = (dev_id << 16) + (prop << 8) + is_upscale;
      std::lock_guard<std::mutex> lock(s_mask_data_table_lock);
      if (mask_data_tables.find(index) == mask_data_tables.end()) {
        float* mask_data_host = new float[max_data_size];
        std::random_device rnd;
        std::minstd_rand engine;
        int seed =
            context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
        engine.seed(seed);
        std::uniform_real_distribution<float> dist(0, 1);
        for (size_t i = 0; i < max_data_size; ++i) {
          if (dist(engine) < dropout_prob) {
            mask_data_host[i] = 0.0f;
          } else {
            if (is_upscale) {
              mask_data_host[i] = 1.0f / static_cast<T>(1.0f - dropout_prob);
            } else {
              mask_data_host[i] = 1.0;
            }
          }
        }
X
xiaoting 已提交
67
        PADDLE_ENFORCE_EQ(
68
            xpu_malloc(reinterpret_cast<void**>(&mask_data_table),
X
xiaoting 已提交
69 70 71 72 73 74 75 76
                       max_data_size * sizeof(float)),
            XPU_SUCCESS,
            platform::errors::ResourceExhausted(
                "\n\nOut of memory error on XPU, Cannot"
                "allocate %s memory on XPU. \n\nPlease "
                "check whether there is any other process "
                "using XPU.\n",
                string::HumanReadableSize(max_data_size * sizeof(void*))));
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
                     mask_data_table, platform::CPUPlace(), mask_data_host,
                     max_data_size * sizeof(float));
        mask_data_tables[index] = mask_data_table;
        free(mask_data_host);
      } else {
        mask_data_table = mask_data_tables[index];
      }
    }
    if (!context.Attr<bool>("is_test")) {  // Train
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
      size_t size = framework::product(mask->dims());
      auto& dev_ctx = context.template device_context<DeviceContext>();
      int r = xpu::dropout(dev_ctx.x_context(), mask_data_table, x_data,
                           mask_data, y_data, max_data_size, size);
X
xiaoting 已提交
93 94 95 96 97 98
      PADDLE_ENFORCE_EQ(
          r, xpu::Error_t::SUCCESS,
          platform::errors::External(
              "XPU dropout return wrong value[%d], please check whether "
              "Baidu Kunlun Card is properly installed.",
              r));
99 100 101 102 103 104 105 106 107 108
    } else {  // Infer
      float scale = 0.0f;
      if (dropout_implementation == "upscale_in_train") {
        scale = 1.0f;
      } else {
        scale = static_cast<T>(1.0f - dropout_prob);
      }
      auto& dev_ctx = context.template device_context<DeviceContext>();
      int r = xpu::scale(dev_ctx.x_context(), x->numel(), scale, 0.0f, 0,
                         x_data, y_data);
X
xiaoting 已提交
109 110 111 112 113 114
      PADDLE_ENFORCE_EQ(
          r, xpu::Error_t::SUCCESS,
          platform::errors::External(
              "XPU dropout return wrong value[%d], please check whether "
              "Baidu Kunlun Card is properly installed.",
              r));
115 116 117 118 119 120 121
    }
  }
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
X
xiaoting 已提交
122 123 124
    PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
125 126 127 128 129 130 131 132
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
    int r = xpu::elementwise_mul(dev_ctx.x_context(), grad_y->data<T>(),
                                 mask->data<T>(), grad_x->data<T>(),
                                 grad_y->numel());
X
xiaoting 已提交
133 134 135 136 137 138
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External(
            "XPU dropout return wrong value[%d], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r));
139 140 141 142 143 144 145 146 147 148 149
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    dropout_grad,
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif