/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/dropout_op.h" #include #include #include "paddle/fluid/platform/xpu_header.h" namespace paddle { namespace operators { #ifdef PADDLE_WITH_XPU static std::map mask_data_tables; static const int max_data_size = 32 * 1024 * 1024; static std::mutex s_mask_data_table_lock; template class DropoutXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); auto* y = context.Output("Out"); const auto* x_data = x->data(); auto* y_data = y->mutable_data(context.GetPlace()); float dropout_prob = context.Attr("dropout_prob"); auto dropout_implementation = context.Attr("dropout_implementation"); float* mask_data_table = nullptr; PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true, platform::errors::InvalidArgument( ("Input(Seed) not supported on XPU"))); if (!context.Attr("is_test")) { int dev_id = BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId(); int prop = static_cast(dropout_prob * 100); int is_upscale = (dropout_implementation == "upscale_in_train"); /* mask_data_tables key contains 3 part: * | 31-16 | 15-8 | 7-0 | * | dev_id | prob | is_upscale | */ int index = (dev_id << 16) + (prop << 8) + is_upscale; std::lock_guard lock(s_mask_data_table_lock); if (mask_data_tables.find(index) == mask_data_tables.end()) { float* mask_data_host = new float[max_data_size]; std::random_device rnd; std::minstd_rand engine; int seed = context.Attr("fix_seed") ? context.Attr("seed") : rnd(); engine.seed(seed); std::uniform_real_distribution dist(0, 1); for (size_t i = 0; i < max_data_size; ++i) { if (dist(engine) < dropout_prob) { mask_data_host[i] = 0.0f; } else { if (is_upscale) { mask_data_host[i] = 1.0f / static_cast(1.0f - dropout_prob); } else { mask_data_host[i] = 1.0; } } } PADDLE_ENFORCE_EQ( xpu_malloc(reinterpret_cast(&mask_data_table), max_data_size * sizeof(float)), XPU_SUCCESS, platform::errors::ResourceExhausted( "\n\nOut of memory error on XPU, Cannot" "allocate %s memory on XPU. \n\nPlease " "check whether there is any other process " "using XPU.\n", string::HumanReadableSize(max_data_size * sizeof(void*)))); memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), mask_data_table, platform::CPUPlace(), mask_data_host, max_data_size * sizeof(float)); mask_data_tables[index] = mask_data_table; free(mask_data_host); } else { mask_data_table = mask_data_tables[index]; } } if (!context.Attr("is_test")) { // Train auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); size_t size = framework::product(mask->dims()); auto& dev_ctx = context.template device_context(); int r = xpu::dropout(dev_ctx.x_context(), mask_data_table, x_data, mask_data, y_data, max_data_size, size); PADDLE_ENFORCE_EQ( r, xpu::Error_t::SUCCESS, platform::errors::External( "XPU dropout return wrong value[%d], please check whether " "Baidu Kunlun Card is properly installed.", r)); } else { // Infer float scale = 0.0f; if (dropout_implementation == "upscale_in_train") { scale = 1.0f; } else { scale = static_cast(1.0f - dropout_prob); } auto& dev_ctx = context.template device_context(); int r = xpu::scale(dev_ctx.x_context(), x->numel(), scale, 0.0f, 0, x_data, y_data); PADDLE_ENFORCE_EQ( r, xpu::Error_t::SUCCESS, platform::errors::External( "XPU dropout return wrong value[%d], please check whether " "Baidu Kunlun Card is properly installed.", r)); } } }; template class DropoutGradXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { PADDLE_ENFORCE_EQ(!context.Attr("is_test"), true, platform::errors::InvalidArgument( "GradOp is only callable when is_test is false")); auto* grad_x = context.Output(framework::GradVarName("X")); auto* grad_y = context.Input(framework::GradVarName("Out")); auto* mask = context.Input("Mask"); grad_x->mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); int r = xpu::elementwise_mul(dev_ctx.x_context(), grad_y->data(), mask->data(), grad_x->data(), grad_y->numel()); PADDLE_ENFORCE_EQ( r, xpu::Error_t::SUCCESS, platform::errors::External( "XPU dropout return wrong value[%d], please check whether " "Baidu Kunlun Card is properly installed.", r)); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL( dropout, ops::DropoutXPUKernel); REGISTER_OP_XPU_KERNEL( dropout_grad, ops::DropoutGradXPUKernel); #endif