test_mobile_net.py 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import sys
17
import tempfile
18
import time
19 20
import unittest

21
import numpy as np
22 23
from predictor_utils import PredictorTools

L
Leo Chen 已提交
24
import paddle
25
from paddle import fluid
26
from paddle.fluid.param_attr import ParamAttr
H
hjyp 已提交
27
from paddle.jit.api import to_static
28
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
29
from paddle.nn import BatchNorm, Linear
30

31 32 33 34 35 36 37 38 39
# Note: Set True to eliminate randomness.
#     1. For one operation, cuDNN has several algorithms,
#        some algorithm results are non-deterministic, like convolution algorithms.
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})

SEED = 2020


40
class ConvBNLayer(paddle.nn.Layer):
41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(
        self,
        num_channels,
        filter_size,
        num_filters,
        stride,
        padding,
        channels=None,
        num_groups=1,
        act='relu',
        use_cudnn=True,
        name=None,
    ):
54
        super().__init__()
55

56 57 58 59
        self._conv = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
60 61 62
            stride=stride,
            padding=padding,
            groups=num_groups,
63
            weight_attr=ParamAttr(
64 65
                initializer=paddle.nn.initializer.KaimingUniform(),
                name=self.full_name() + "_weights",
66 67 68
            ),
            bias_attr=False,
        )
69 70 71 72 73 74 75

        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
            bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
            moving_mean_name=self.full_name() + "_bn" + '_mean',
76 77
            moving_variance_name=self.full_name() + "_bn" + '_variance',
        )
78 79 80 81 82

    def forward(self, inputs, if_act=False):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        if if_act:
83
            y = paddle.nn.functional.relu6(y)
84 85 86
        return y


87
class DepthwiseSeparable(paddle.nn.Layer):
88 89 90 91 92 93 94 95 96 97
    def __init__(
        self,
        num_channels,
        num_filters1,
        num_filters2,
        num_groups,
        stride,
        scale,
        name=None,
    ):
98
        super().__init__()
99

100 101 102 103 104 105 106 107 108
        self._depthwise_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=int(num_filters1 * scale),
            filter_size=3,
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=True,
        )
109 110 111 112 113 114

        self._pointwise_conv = ConvBNLayer(
            num_channels=int(num_filters1 * scale),
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
115 116
            padding=0,
        )
117 118 119 120 121 122 123

    def forward(self, inputs):
        y = self._depthwise_conv(inputs)
        y = self._pointwise_conv(y)
        return y


124
class MobileNetV1(paddle.nn.Layer):
125
    def __init__(self, scale=1.0, class_dim=1000):
126
        super().__init__()
127 128 129
        self.scale = scale
        self.dwsl = []

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            channels=3,
            num_filters=int(32 * scale),
            stride=2,
            padding=1,
        )

        dws21 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(32 * scale),
                num_filters1=32,
                num_filters2=64,
                num_groups=32,
                stride=1,
                scale=scale,
            ),
            name="conv2_1",
        )
150 151
        self.dwsl.append(dws21)

152 153 154 155 156 157 158 159 160 161 162
        dws22 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(64 * scale),
                num_filters1=64,
                num_filters2=128,
                num_groups=64,
                stride=2,
                scale=scale,
            ),
            name="conv2_2",
        )
163 164
        self.dwsl.append(dws22)

165 166 167 168 169 170 171 172 173 174 175
        dws31 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(128 * scale),
                num_filters1=128,
                num_filters2=128,
                num_groups=128,
                stride=1,
                scale=scale,
            ),
            name="conv3_1",
        )
176 177
        self.dwsl.append(dws31)

178 179 180 181 182 183 184 185 186 187 188
        dws32 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(128 * scale),
                num_filters1=128,
                num_filters2=256,
                num_groups=128,
                stride=2,
                scale=scale,
            ),
            name="conv3_2",
        )
189 190
        self.dwsl.append(dws32)

191 192 193 194 195 196 197 198 199 200 201
        dws41 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(256 * scale),
                num_filters1=256,
                num_filters2=256,
                num_groups=256,
                stride=1,
                scale=scale,
            ),
            name="conv4_1",
        )
202 203
        self.dwsl.append(dws41)

204 205 206 207 208 209 210 211 212 213 214
        dws42 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(256 * scale),
                num_filters1=256,
                num_filters2=512,
                num_groups=256,
                stride=2,
                scale=scale,
            ),
            name="conv4_2",
        )
215 216 217
        self.dwsl.append(dws42)

        for i in range(5):
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            tmp = self.add_sublayer(
                sublayer=DepthwiseSeparable(
                    num_channels=int(512 * scale),
                    num_filters1=512,
                    num_filters2=512,
                    num_groups=512,
                    stride=1,
                    scale=scale,
                ),
                name="conv5_" + str(i + 1),
            )
            self.dwsl.append(tmp)

        dws56 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
233 234
                num_channels=int(512 * scale),
                num_filters1=512,
235
                num_filters2=1024,
236
                num_groups=512,
237 238 239 240 241
                stride=2,
                scale=scale,
            ),
            name="conv5_6",
        )
242 243
        self.dwsl.append(dws56)

244 245 246 247 248 249 250 251 252 253 254
        dws6 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
                num_channels=int(1024 * scale),
                num_filters1=1024,
                num_filters2=1024,
                num_groups=1024,
                stride=1,
                scale=scale,
            ),
            name="conv6",
        )
255 256
        self.dwsl.append(dws6)

W
wangzhen38 已提交
257
        self.pool2d_avg = paddle.nn.AdaptiveAvgPool2D(1)
258

259 260 261
        self.out = Linear(
            int(1024 * scale),
            class_dim,
262
            weight_attr=ParamAttr(
263 264
                initializer=paddle.nn.initializer.KaimingUniform(),
                name=self.full_name() + "fc7_weights",
265 266 267
            ),
            bias_attr=ParamAttr(name="fc7_offset"),
        )
268

H
hjyp 已提交
269
    @to_static
270 271 272 273 274
    def forward(self, inputs):
        y = self.conv1(inputs)
        for dws in self.dwsl:
            y = dws(y)
        y = self.pool2d_avg(y)
275
        y = paddle.reshape(y, shape=[-1, 1024])
276 277 278 279
        y = self.out(y)
        return y


280
class InvertedResidualUnit(paddle.nn.Layer):
281
    def __init__(
282 283 284 285 286 287 288 289 290
        self,
        num_channels,
        num_in_filter,
        num_filters,
        stride,
        filter_size,
        padding,
        expansion_factor,
    ):
291
        super().__init__()
292
        num_expfilter = int(round(num_in_filter * expansion_factor))
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        self._expand_conv = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            num_groups=1,
        )

        self._bottleneck_conv = ConvBNLayer(
            num_channels=num_expfilter,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            act=None,
            use_cudnn=True,
        )

        self._linear_conv = ConvBNLayer(
            num_channels=num_expfilter,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            num_groups=1,
        )
323 324 325 326 327 328

    def forward(self, inputs, ifshortcut):
        y = self._expand_conv(inputs, if_act=True)
        y = self._bottleneck_conv(y, if_act=True)
        y = self._linear_conv(y, if_act=False)
        if ifshortcut:
329
            y = paddle.add(inputs, y)
330 331 332
        return y


333
class InvresiBlocks(paddle.nn.Layer):
334
    def __init__(self, in_c, t, c, n, s):
335
        super().__init__()
336

337 338 339 340 341 342 343 344 345
        self._first_block = InvertedResidualUnit(
            num_channels=in_c,
            num_in_filter=in_c,
            num_filters=c,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t,
        )
346 347 348

        self._inv_blocks = []
        for i in range(1, n):
349 350 351 352 353 354 355 356 357 358 359 360
            tmp = self.add_sublayer(
                sublayer=InvertedResidualUnit(
                    num_channels=c,
                    num_in_filter=c,
                    num_filters=c,
                    stride=1,
                    filter_size=3,
                    padding=1,
                    expansion_factor=t,
                ),
                name=self.full_name() + "_" + str(i + 1),
            )
361 362 363 364 365 366 367 368 369
            self._inv_blocks.append(tmp)

    def forward(self, inputs):
        y = self._first_block(inputs, ifshortcut=False)
        for inv_block in self._inv_blocks:
            y = inv_block(y, ifshortcut=True)
        return y


370
class MobileNetV2(paddle.nn.Layer):
371
    def __init__(self, class_dim=1000, scale=1.0):
372
        super().__init__()
373 374 375 376 377 378 379 380 381 382 383 384 385
        self.scale = scale
        self.class_dim = class_dim

        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

386 387 388 389 390 391 392 393 394 395 396
        # 1. conv1
        self._conv1 = ConvBNLayer(
            num_channels=3,
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            act=None,
            padding=1,
        )

        # 2. bottleneck sequences
397 398 399 400 401 402
        self._invl = []
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
403 404 405 406 407 408
            tmp = self.add_sublayer(
                sublayer=InvresiBlocks(
                    in_c=in_c, t=t, c=int(c * scale), n=n, s=s
                ),
                name='conv' + str(i),
            )
409 410 411
            self._invl.append(tmp)
            in_c = int(c * scale)

412
        # 3. last_conv
413
        self._out_c = int(1280 * scale) if scale > 1.0 else 1280
414 415 416 417 418 419 420 421 422 423
        self._conv9 = ConvBNLayer(
            num_channels=in_c,
            num_filters=self._out_c,
            filter_size=1,
            stride=1,
            act=None,
            padding=0,
        )

        # 4. pool
W
wangzhen38 已提交
424
        self._pool2d_avg = paddle.nn.AdaptiveAvgPool2D(1)
425

426
        # 5. fc
427
        tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
428 429 430
        self._fc = Linear(
            self._out_c,
            class_dim,
431
            weight_attr=tmp_param,
432 433
            bias_attr=ParamAttr(name="fc10_offset"),
        )
434

H
hjyp 已提交
435
    @to_static
436 437 438 439 440 441
    def forward(self, inputs):
        y = self._conv1(inputs, if_act=True)
        for inv in self._invl:
            y = inv(y)
        y = self._conv9(y, if_act=True)
        y = self._pool2d_avg(y)
442
        y = paddle.reshape(y, shape=[-1, self._out_c])
443 444 445 446 447 448 449 450
        y = self._fc(y)
        return y


def create_optimizer(args, parameter_list):
    optimizer = fluid.optimizer.Momentum(
        learning_rate=args.lr,
        momentum=args.momentum_rate,
451
        regularization=paddle.regularizer.L2Decay(args.l2_decay),
452 453
        parameter_list=parameter_list,
    )
454 455 456 457

    return optimizer


J
JYChen 已提交
458 459 460 461
class FakeDataSet(paddle.io.Dataset):
    def __init__(self, batch_size, label_size, train_steps):
        self.local_random = np.random.RandomState(SEED)
        self.label_size = label_size
462

J
JYChen 已提交
463 464
        self.imgs = []
        self.labels = []
465

J
JYChen 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        self._generate_fake_data(batch_size * (train_steps + 1))

    def _generate_fake_data(self, length):
        for i in range(length):
            img = self.local_random.random_sample([3, 224, 224]).astype(
                'float32'
            )
            label = self.local_random.randint(0, self.label_size, [1]).astype(
                'int64'
            )

            self.imgs.append(img)
            self.labels.append(label)

    def __getitem__(self, idx):
        return [self.imgs[idx], self.labels[idx]]

    def __len__(self):
        return len(self.imgs)
485 486


487
class Args:
488 489 490 491 492 493 494 495 496
    batch_size = 4
    model = "MobileNetV1"
    lr = 0.001
    momentum_rate = 0.99
    l2_decay = 0.1
    num_epochs = 1
    class_dim = 50
    print_step = 1
    train_step = 10
497 498 499 500 501
    place = (
        fluid.CUDAPlace(0)
        if fluid.is_compiled_with_cuda()
        else fluid.CPUPlace()
    )
502 503 504 505 506
    model_save_dir = None
    model_save_prefix = None
    model_filename = None
    params_filename = None
    dy_state_dict_save_path = None
507 508 509


def train_mobilenet(args, to_static):
R
Ryan 已提交
510
    paddle.jit.enable_to_static(to_static)
511
    with fluid.dygraph.guard(args.place):
512
        np.random.seed(SEED)
C
cnn 已提交
513
        paddle.seed(SEED)
L
Leo Chen 已提交
514
        paddle.framework.random._manual_program_seed(SEED)
515 516 517 518 519 520 521 522 523

        if args.model == "MobileNetV1":
            net = MobileNetV1(class_dim=args.class_dim, scale=1.0)
        elif args.model == "MobileNetV2":
            net = MobileNetV2(class_dim=args.class_dim, scale=1.0)
        else:
            print(
                "wrong model name, please try model = MobileNetV1 or MobileNetV2"
            )
524
            sys.exit()
525 526 527 528

        optimizer = create_optimizer(args=args, parameter_list=net.parameters())

        # 3. reader
J
JYChen 已提交
529 530 531 532 533 534 535 536 537
        train_dataset = FakeDataSet(
            args.batch_size, args.class_dim, args.train_step
        )
        BatchSampler = paddle.io.BatchSampler(
            train_dataset, batch_size=args.batch_size
        )
        train_data_loader = paddle.io.DataLoader(
            train_dataset, batch_sampler=BatchSampler
        )
538 539 540 541 542 543 544 545 546 547 548 549 550

        # 4. train loop
        loss_data = []
        for eop in range(args.num_epochs):
            net.train()
            batch_id = 0
            t_last = 0
            for img, label in train_data_loader():
                t1 = time.time()
                t_start = time.time()
                out = net(img)

                t_end = time.time()
551
                softmax_out = paddle.nn.functional.softmax(out)
552 553 554 555 556
                loss = paddle.nn.functional.cross_entropy(
                    input=softmax_out,
                    label=label,
                    reduction='none',
                    use_softmax=False,
557
                )
558
                avg_loss = paddle.mean(x=loss)
559 560
                acc_top1 = paddle.static.accuracy(input=out, label=label, k=1)
                acc_top5 = paddle.static.accuracy(input=out, label=label, k=5)
561 562 563 564 565 566 567 568 569 570 571
                t_start_back = time.time()

                loss_data.append(avg_loss.numpy())
                avg_loss.backward()
                t_end_back = time.time()
                optimizer.minimize(avg_loss)
                net.clear_gradients()

                t2 = time.time()
                train_batch_elapse = t2 - t1
                if batch_id % args.print_step == 0:
572 573 574 575 576 577 578 579 580 581 582 583 584 585
                    print(
                        "epoch id: %d, batch step: %d,  avg_loss %0.5f acc_top1 %0.5f acc_top5 %0.5f %2.4f sec net_t:%2.4f back_t:%2.4f read_t:%2.4f"
                        % (
                            eop,
                            batch_id,
                            avg_loss.numpy(),
                            acc_top1.numpy(),
                            acc_top5.numpy(),
                            train_batch_elapse,
                            t_end - t_start,
                            t_end_back - t_start_back,
                            t1 - t_last,
                        )
                    )
586 587 588
                batch_id += 1
                t_last = time.time()
                if batch_id > args.train_step:
589
                    if to_static:
590
                        paddle.jit.save(net, args.model_save_prefix)
591
                    else:
592 593 594
                        paddle.save(
                            net.state_dict(),
                            args.dy_state_dict_save_path + '.pdparams',
595
                        )
596 597 598 599 600
                    break

    return np.array(loss_data)


601
def predict_static(args, data):
602
    paddle.enable_static()
603 604
    exe = fluid.Executor(args.place)
    # load inference model
H
hong 已提交
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    [
        inference_program,
        feed_target_names,
        fetch_targets,
    ] = fluid.io.load_inference_model(
        args.model_save_dir,
        executor=exe,
        model_filename=args.model_filename,
        params_filename=args.params_filename,
    )

    pred_res = exe.run(
        inference_program,
        feed={feed_target_names[0]: data},
        fetch_list=fetch_targets,
    )
622 623 624 625
    return pred_res[0]


def predict_dygraph(args, data):
R
Ryan 已提交
626
    paddle.jit.enable_to_static(False)
627 628 629 630 631 632
    with fluid.dygraph.guard(args.place):
        if args.model == "MobileNetV1":
            model = MobileNetV1(class_dim=args.class_dim, scale=1.0)
        elif args.model == "MobileNetV2":
            model = MobileNetV2(class_dim=args.class_dim, scale=1.0)
        # load dygraph trained parameters
633
        model_dict = paddle.load(args.dy_state_dict_save_path + '.pdparams')
634 635 636 637 638 639 640 641 642 643
        model.set_dict(model_dict)
        model.eval()

        pred_res = model(fluid.dygraph.to_variable(data))

        return pred_res.numpy()


def predict_dygraph_jit(args, data):
    with fluid.dygraph.guard(args.place):
644
        model = paddle.jit.load(args.model_save_prefix)
645 646 647 648 649 650 651
        model.eval()

        pred_res = model(data)

        return pred_res.numpy()


652
def predict_analysis_inference(args, data):
653 654 655 656
    output = PredictorTools(
        args.model_save_dir, args.model_filename, args.params_filename, [data]
    )
    (out,) = output()
657 658 659
    return out


660 661 662
class TestMobileNet(unittest.TestCase):
    def setUp(self):
        self.args = Args()
663
        self.temp_dir = tempfile.TemporaryDirectory()
664 665 666
        self.args.model_save_dir = os.path.join(
            self.temp_dir.name, "./inference"
        )
667 668 669

    def tearDown(self):
        self.temp_dir.cleanup()
670 671 672

    def train(self, model_name, to_static):
        self.args.model = model_name
673 674 675
        self.args.model_save_prefix = os.path.join(
            self.temp_dir.name, "./inference/" + model_name
        )
676 677
        self.args.model_filename = model_name + INFER_MODEL_SUFFIX
        self.args.params_filename = model_name + INFER_PARAMS_SUFFIX
678
        self.args.dy_state_dict_save_path = os.path.join(
679 680
            self.temp_dir.name, model_name + ".dygraph"
        )
681 682 683 684 685 686
        out = train_mobilenet(self.args, to_static)
        return out

    def assert_same_loss(self, model_name):
        dy_out = self.train(model_name, to_static=False)
        st_out = self.train(model_name, to_static=True)
687 688 689 690
        np.testing.assert_allclose(
            dy_out,
            st_out,
            rtol=1e-05,
691
            err_msg=f'dy_out: {dy_out}, st_out: {st_out}',
692
        )
693

694 695
    def assert_same_predict(self, model_name):
        self.args.model = model_name
696 697 698
        self.args.model_save_prefix = os.path.join(
            self.temp_dir.name, "./inference/" + model_name
        )
699 700
        self.args.model_filename = model_name + INFER_MODEL_SUFFIX
        self.args.params_filename = model_name + INFER_PARAMS_SUFFIX
701
        self.args.dy_state_dict_save_path = os.path.join(
702 703
            self.temp_dir.name, model_name + ".dygraph"
        )
704 705 706 707 708
        local_random = np.random.RandomState(SEED)
        image = local_random.random_sample([1, 3, 224, 224]).astype('float32')
        dy_pre = predict_dygraph(self.args, image)
        st_pre = predict_static(self.args, image)
        dy_jit_pre = predict_dygraph_jit(self.args, image)
709
        predictor_pre = predict_analysis_inference(self.args, image)
710 711 712 713
        np.testing.assert_allclose(
            dy_pre,
            st_pre,
            rtol=1e-05,
714
            err_msg=f'dy_pre:\n {dy_pre}\n, st_pre: \n{st_pre}.',
715
        )
716 717 718 719 720
        np.testing.assert_allclose(
            dy_jit_pre,
            st_pre,
            rtol=1e-05,
            err_msg='dy_jit_pre:\n {}\n, st_pre: \n{}.'.format(
721 722 723
                dy_jit_pre, st_pre
            ),
        )
724 725 726 727 728 729
        np.testing.assert_allclose(
            predictor_pre,
            st_pre,
            rtol=1e-05,
            atol=1e-05,
            err_msg='inference_pred_res:\n {}\n, st_pre: \n{}.'.format(
730 731 732
                predictor_pre, st_pre
            ),
        )
733 734

    def test_mobile_net(self):
735
        # MobileNet-V1
736
        self.assert_same_loss("MobileNetV1")
737
        # MobileNet-V2
738 739
        self.assert_same_loss("MobileNetV2")

740 741 742 743 744 745 746 747
        self.verify_predict()

    def verify_predict(self):
        # MobileNet-V1
        self.assert_same_predict("MobileNetV1")
        # MobileNet-V2
        self.assert_same_predict("MobileNetV2")

748 749

if __name__ == '__main__':
750
    unittest.main()