Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0b6145e0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b6145e0
编写于
6月 12, 2020
作者:
A
Aurelius84
提交者:
GitHub
6月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dy2stat] Add MobileNet model unittest (#25018)
* add MobileNet unittest test=develop * fix cudnn random test=develop
上级
be6a315f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
528 addition
and
0 deletion
+528
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_mobile_net.py
...luid/tests/unittests/dygraph_to_static/test_mobile_net.py
+528
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_mobile_net.py
0 → 100644
浏览文件 @
0b6145e0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
time
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph
import
declarative
,
ProgramTranslator
import
unittest
# Note: Set True to eliminate randomness.
# 1. For one operation, cuDNN has several algorithms,
# some algorithm results are non-deterministic, like convolution algorithms.
if
fluid
.
is_compiled_with_cuda
():
fluid
.
set_flags
({
'FLAGS_cudnn_deterministic'
:
True
})
SEED
=
2020
program_translator
=
ProgramTranslator
()
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
num_groups
=
1
,
act
=
'relu'
,
use_cudnn
=
True
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
self
.
full_name
()
+
"_weights"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_bn"
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
self
.
full_name
()
+
"_bn"
+
"_offset"
),
moving_mean_name
=
self
.
full_name
()
+
"_bn"
+
'_mean'
,
moving_variance_name
=
self
.
full_name
()
+
"_bn"
+
'_variance'
)
def
forward
(
self
,
inputs
,
if_act
=
False
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
if
if_act
:
y
=
fluid
.
layers
.
relu6
(
y
)
return
y
class
DepthwiseSeparable
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters1
,
num_filters2
,
num_groups
,
stride
,
scale
,
name
=
None
):
super
(
DepthwiseSeparable
,
self
).
__init__
()
self
.
_depthwise_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
int
(
num_filters1
*
scale
),
filter_size
=
3
,
stride
=
stride
,
padding
=
1
,
num_groups
=
int
(
num_groups
*
scale
),
use_cudnn
=
True
)
self
.
_pointwise_conv
=
ConvBNLayer
(
num_channels
=
int
(
num_filters1
*
scale
),
filter_size
=
1
,
num_filters
=
int
(
num_filters2
*
scale
),
stride
=
1
,
padding
=
0
)
def
forward
(
self
,
inputs
):
y
=
self
.
_depthwise_conv
(
inputs
)
y
=
self
.
_pointwise_conv
(
y
)
return
y
class
MobileNetV1
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
scale
=
1.0
,
class_dim
=
1000
):
super
(
MobileNetV1
,
self
).
__init__
()
self
.
scale
=
scale
self
.
dwsl
=
[]
self
.
conv1
=
ConvBNLayer
(
num_channels
=
3
,
filter_size
=
3
,
channels
=
3
,
num_filters
=
int
(
32
*
scale
),
stride
=
2
,
padding
=
1
)
dws21
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
32
*
scale
),
num_filters1
=
32
,
num_filters2
=
64
,
num_groups
=
32
,
stride
=
1
,
scale
=
scale
),
name
=
"conv2_1"
)
self
.
dwsl
.
append
(
dws21
)
dws22
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
64
*
scale
),
num_filters1
=
64
,
num_filters2
=
128
,
num_groups
=
64
,
stride
=
2
,
scale
=
scale
),
name
=
"conv2_2"
)
self
.
dwsl
.
append
(
dws22
)
dws31
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
128
*
scale
),
num_filters1
=
128
,
num_filters2
=
128
,
num_groups
=
128
,
stride
=
1
,
scale
=
scale
),
name
=
"conv3_1"
)
self
.
dwsl
.
append
(
dws31
)
dws32
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
128
*
scale
),
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
128
,
stride
=
2
,
scale
=
scale
),
name
=
"conv3_2"
)
self
.
dwsl
.
append
(
dws32
)
dws41
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
256
*
scale
),
num_filters1
=
256
,
num_filters2
=
256
,
num_groups
=
256
,
stride
=
1
,
scale
=
scale
),
name
=
"conv4_1"
)
self
.
dwsl
.
append
(
dws41
)
dws42
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
256
*
scale
),
num_filters1
=
256
,
num_filters2
=
512
,
num_groups
=
256
,
stride
=
2
,
scale
=
scale
),
name
=
"conv4_2"
)
self
.
dwsl
.
append
(
dws42
)
for
i
in
range
(
5
):
tmp
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
512
*
scale
),
num_filters1
=
512
,
num_filters2
=
512
,
num_groups
=
512
,
stride
=
1
,
scale
=
scale
),
name
=
"conv5_"
+
str
(
i
+
1
))
self
.
dwsl
.
append
(
tmp
)
dws56
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
512
*
scale
),
num_filters1
=
512
,
num_filters2
=
1024
,
num_groups
=
512
,
stride
=
2
,
scale
=
scale
),
name
=
"conv5_6"
)
self
.
dwsl
.
append
(
dws56
)
dws6
=
self
.
add_sublayer
(
sublayer
=
DepthwiseSeparable
(
num_channels
=
int
(
1024
*
scale
),
num_filters1
=
1024
,
num_filters2
=
1024
,
num_groups
=
1024
,
stride
=
1
,
scale
=
scale
),
name
=
"conv6"
)
self
.
dwsl
.
append
(
dws6
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
out
=
Linear
(
int
(
1024
*
scale
),
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
self
.
full_name
()
+
"fc7_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc7_offset"
))
@
declarative
def
forward
(
self
,
inputs
):
y
=
self
.
conv1
(
inputs
)
for
dws
in
self
.
dwsl
:
y
=
dws
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
1024
])
y
=
self
.
out
(
y
)
return
y
class
InvertedResidualUnit
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_in_filter
,
num_filters
,
stride
,
filter_size
,
padding
,
expansion_factor
,
):
super
(
InvertedResidualUnit
,
self
).
__init__
()
num_expfilter
=
int
(
round
(
num_in_filter
*
expansion_factor
))
self
.
_expand_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_expfilter
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
num_groups
=
1
)
self
.
_bottleneck_conv
=
ConvBNLayer
(
num_channels
=
num_expfilter
,
num_filters
=
num_expfilter
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
num_groups
=
num_expfilter
,
act
=
None
,
use_cudnn
=
True
)
self
.
_linear_conv
=
ConvBNLayer
(
num_channels
=
num_expfilter
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
num_groups
=
1
)
def
forward
(
self
,
inputs
,
ifshortcut
):
y
=
self
.
_expand_conv
(
inputs
,
if_act
=
True
)
y
=
self
.
_bottleneck_conv
(
y
,
if_act
=
True
)
y
=
self
.
_linear_conv
(
y
,
if_act
=
False
)
if
ifshortcut
:
y
=
fluid
.
layers
.
elementwise_add
(
inputs
,
y
)
return
y
class
InvresiBlocks
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_c
,
t
,
c
,
n
,
s
):
super
(
InvresiBlocks
,
self
).
__init__
()
self
.
_first_block
=
InvertedResidualUnit
(
num_channels
=
in_c
,
num_in_filter
=
in_c
,
num_filters
=
c
,
stride
=
s
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
)
self
.
_inv_blocks
=
[]
for
i
in
range
(
1
,
n
):
tmp
=
self
.
add_sublayer
(
sublayer
=
InvertedResidualUnit
(
num_channels
=
c
,
num_in_filter
=
c
,
num_filters
=
c
,
stride
=
1
,
filter_size
=
3
,
padding
=
1
,
expansion_factor
=
t
),
name
=
self
.
full_name
()
+
"_"
+
str
(
i
+
1
))
self
.
_inv_blocks
.
append
(
tmp
)
def
forward
(
self
,
inputs
):
y
=
self
.
_first_block
(
inputs
,
ifshortcut
=
False
)
for
inv_block
in
self
.
_inv_blocks
:
y
=
inv_block
(
y
,
ifshortcut
=
True
)
return
y
class
MobileNetV2
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
class_dim
=
1000
,
scale
=
1.0
):
super
(
MobileNetV2
,
self
).
__init__
()
self
.
scale
=
scale
self
.
class_dim
=
class_dim
bottleneck_params_list
=
[
(
1
,
16
,
1
,
1
),
(
6
,
24
,
2
,
2
),
(
6
,
32
,
3
,
2
),
(
6
,
64
,
4
,
2
),
(
6
,
96
,
3
,
1
),
(
6
,
160
,
3
,
2
),
(
6
,
320
,
1
,
1
),
]
#1. conv1
self
.
_conv1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
int
(
32
*
scale
),
filter_size
=
3
,
stride
=
2
,
act
=
None
,
padding
=
1
)
#2. bottleneck sequences
self
.
_invl
=
[]
i
=
1
in_c
=
int
(
32
*
scale
)
for
layer_setting
in
bottleneck_params_list
:
t
,
c
,
n
,
s
=
layer_setting
i
+=
1
tmp
=
self
.
add_sublayer
(
sublayer
=
InvresiBlocks
(
in_c
=
in_c
,
t
=
t
,
c
=
int
(
c
*
scale
),
n
=
n
,
s
=
s
),
name
=
'conv'
+
str
(
i
))
self
.
_invl
.
append
(
tmp
)
in_c
=
int
(
c
*
scale
)
#3. last_conv
self
.
_out_c
=
int
(
1280
*
scale
)
if
scale
>
1.0
else
1280
self
.
_conv9
=
ConvBNLayer
(
num_channels
=
in_c
,
num_filters
=
self
.
_out_c
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
padding
=
0
)
#4. pool
self
.
_pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
#5. fc
tmp_param
=
ParamAttr
(
name
=
self
.
full_name
()
+
"fc10_weights"
)
self
.
_fc
=
Linear
(
self
.
_out_c
,
class_dim
,
param_attr
=
tmp_param
,
bias_attr
=
ParamAttr
(
name
=
"fc10_offset"
))
@
declarative
def
forward
(
self
,
inputs
):
y
=
self
.
_conv1
(
inputs
,
if_act
=
True
)
for
inv
in
self
.
_invl
:
y
=
inv
(
y
)
y
=
self
.
_conv9
(
y
,
if_act
=
True
)
y
=
self
.
_pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
_out_c
])
y
=
self
.
_fc
(
y
)
return
y
def
create_optimizer
(
args
,
parameter_list
):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
args
.
lr
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
),
parameter_list
=
parameter_list
)
return
optimizer
def
fake_data_reader
(
batch_size
,
lable_size
):
def
reader
():
batch_data
=
[]
while
True
:
img
=
np
.
random
.
random
([
3
,
224
,
224
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
lable_size
,
[
1
]).
astype
(
'int64'
)
batch_data
.
append
([
img
,
label
])
if
len
(
batch_data
)
==
batch_size
:
yield
batch_data
batch_data
=
[]
return
reader
class
Args
(
object
):
batch_size
=
4
model
=
"MobileNetV1"
lr
=
0.001
momentum_rate
=
0.99
l2_decay
=
0.1
num_epochs
=
1
class_dim
=
50
print_step
=
1
train_step
=
10
def
train_mobilenet
(
args
,
to_static
):
program_translator
.
enable
(
to_static
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
np
.
random
.
seed
(
SEED
)
fluid
.
default_startup_program
().
random_seed
=
SEED
fluid
.
default_main_program
().
random_seed
=
SEED
if
args
.
model
==
"MobileNetV1"
:
net
=
MobileNetV1
(
class_dim
=
args
.
class_dim
,
scale
=
1.0
)
elif
args
.
model
==
"MobileNetV2"
:
net
=
MobileNetV2
(
class_dim
=
args
.
class_dim
,
scale
=
1.0
)
else
:
print
(
"wrong model name, please try model = MobileNetV1 or MobileNetV2"
)
exit
()
optimizer
=
create_optimizer
(
args
=
args
,
parameter_list
=
net
.
parameters
())
# 3. reader
train_reader
=
fake_data_reader
(
args
.
batch_size
,
args
.
class_dim
)
train_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
16
)
train_data_loader
.
set_sample_list_generator
(
train_reader
,
place
)
# 4. train loop
loss_data
=
[]
for
eop
in
range
(
args
.
num_epochs
):
net
.
train
()
batch_id
=
0
t_last
=
0
for
img
,
label
in
train_data_loader
():
t1
=
time
.
time
()
t_start
=
time
.
time
()
out
=
net
(
img
)
t_end
=
time
.
time
()
softmax_out
=
fluid
.
layers
.
softmax
(
out
,
use_cudnn
=
False
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
softmax_out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
t_start_back
=
time
.
time
()
loss_data
.
append
(
avg_loss
.
numpy
())
avg_loss
.
backward
()
t_end_back
=
time
.
time
()
optimizer
.
minimize
(
avg_loss
)
net
.
clear_gradients
()
t2
=
time
.
time
()
train_batch_elapse
=
t2
-
t1
if
batch_id
%
args
.
print_step
==
0
:
print
(
"epoch id: %d, batch step: %d, avg_loss %0.5f acc_top1 %0.5f acc_top5 %0.5f %2.4f sec net_t:%2.4f back_t:%2.4f read_t:%2.4f"
%
\
(
eop
,
batch_id
,
avg_loss
.
numpy
(),
acc_top1
.
numpy
(),
acc_top5
.
numpy
(),
train_batch_elapse
,
t_end
-
t_start
,
t_end_back
-
t_start_back
,
t1
-
t_last
))
batch_id
+=
1
t_last
=
time
.
time
()
if
batch_id
>
args
.
train_step
:
break
return
np
.
array
(
loss_data
)
class
TestMobileNet
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
args
=
Args
()
def
train
(
self
,
model_name
,
to_static
):
self
.
args
.
model
=
model_name
out
=
train_mobilenet
(
self
.
args
,
to_static
)
return
out
def
assert_same_loss
(
self
,
model_name
):
dy_out
=
self
.
train
(
model_name
,
to_static
=
False
)
st_out
=
self
.
train
(
model_name
,
to_static
=
True
)
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
st_out
),
msg
=
"dy_out: {}, st_out: {}"
.
format
(
dy_out
,
st_out
))
def
test_mobileNetV1
(
self
):
self
.
assert_same_loss
(
"MobileNetV1"
)
def
test_mobileNetV2
(
self
):
self
.
assert_same_loss
(
"MobileNetV2"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录