roi_align_op.cu 14.0 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/memory/memory.h"
J
jerrywgz 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

template <class T>
J
jerrywgz 已提交
38 39
__device__ T BilinearInterpolate(const T* input_data, const int height,
                                 const int width, T y, T x) {
J
jerrywgz 已提交
40 41 42
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
J
jerrywgz 已提交
43 44
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
J
jerrywgz 已提交
75 76 77 78
__device__ void BilinearInterpolateGradient(const int height, const int width,
                                            T y, T x, T* w1, T* w2, T* w3,
                                            T* w4, int* x_low, int* x_high,
                                            int* y_low, int* y_high) {
J
jerrywgz 已提交
79 80 81 82
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

J
jerrywgz 已提交
83 84
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
85 86 87 88 89
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
90
  } else {
91
    *y_high = *y_low + 1;
J
jerrywgz 已提交
92
  }
93 94 95
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
96
  } else {
97
    *x_high = *x_low + 1;
J
jerrywgz 已提交
98
  }
99
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
100
  T hy = 1. - ly, hx = 1. - lx;
101
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
102 103 104 105 106 107 108 109 110

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
111
    const int sampling_ratio, int* roi_batch_id_data, T* output_data) {
J
jerrywgz 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

126 127
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
J
jerrywgz 已提交
149
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
J
jerrywgz 已提交
150 151 152 153 154 155 156 157 158 159
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
160
                                    const T* out_grad, const int num_rois,
J
jerrywgz 已提交
161 162 163 164 165 166 167 168 169
                                    const float spatial_scale,
                                    const int channels, const int height,
                                    const int width, const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    int* roi_batch_id_data, T* input_grad) {
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
170
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
171 172 173 174 175 176 177 178 179
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

180 181
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
182 183 184
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

185
    T* offset_input_grad =
J
jerrywgz 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
200
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
201 202 203
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
204
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
205 206
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
207 208
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
J
jerrywgz 已提交
209 210
        BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                    &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
211 212 213 214 215 216 217 218 219 220 221 222
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
223
                                  diff4);
J
jerrywgz 已提交
224 225 226 227 228 229 230 231 232 233
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
234
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
259 260
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
261 262 263 264 265
    auto lod = rois->lod();
    PADDLE_ENFORCE_EQ(
        lod.empty(), false,
        "Input(ROIs) Tensor of ROIAlignOp does not contain LoD information.");
    auto rois_lod = lod.back();
J
jerrywgz 已提交
266 267 268
    int rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size, batch_size,
269 270 271 272 273
        platform::errors::InvalidArgument(
            "The rois_batch_size and imgs "
            "batch_size must be the same. But received rois_batch_size = %d, "
            "batch_size = %d",
            rois_batch_size, batch_size));
J
jerrywgz 已提交
274 275 276 277 278 279 280 281
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                      "The rois_num from input and lod must be the same.");
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
282 283
    auto& dev_ctx = ctx.cuda_device_context();
    int bytes = roi_batch_id_list.numel() * sizeof(int);
284
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
285 286 287 288 289
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
    GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
290
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
291
        height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
J
jerrywgz 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        out->mutable_data<T>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

J
jerrywgz 已提交
316 317 318 319 320
    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
321 322
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
J
jerrywgz 已提交
323 324 325 326 327
    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
J
jerrywgz 已提交
328 329
      }
    }
330
    auto& dev_ctx = ctx.cuda_device_context();
331 332
    auto roi_ptr =
        memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
333 334 335 336 337
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    int bytes = roi_batch_id_list.numel() * sizeof(int);
    const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
J
jerrywgz 已提交
338 339
    in_grad->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
340
    set_zero(dev_ctx, in_grad, static_cast<T>(0));
J
jerrywgz 已提交
341 342 343 344 345 346

    int output_grad_size = out_grad->numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
347
      GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
348 349
          output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
          spatial_scale, channels, height, width, pooled_height, pooled_width,
350
          sampling_ratio, roi_id_data,
J
jerrywgz 已提交
351 352
          in_grad->mutable_data<T>(ctx.GetPlace()));
    }
J
jerrywgz 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);