roi_align_op.cu 13.3 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

template <class T>
__device__ T bilinear_interpolate(const T* input_data, const int height,
38
                                  const int width, T y, T x) {
J
jerrywgz 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
78 79 80 81
__device__ void bilinear_interpolate_gradient(const int height, const int width,
                                              T y, T x, T* w1, T* w2, T* w3,
                                              T* w4, int* x_low, int* x_high,
                                              int* y_low, int* y_high) {
J
jerrywgz 已提交
82 83 84 85 86 87 88 89 90 91
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }
92 93 94 95 96
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
97
  } else {
98
    *y_high = *y_low + 1;
J
jerrywgz 已提交
99
  }
100 101 102
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
103
  } else {
104
    *x_high = *x_low + 1;
J
jerrywgz 已提交
105
  }
106
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
107
  T hy = 1. - ly, hx = 1. - lx;
108
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
109 110 111 112 113 114 115 116 117

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
118
    const int sampling_ratio, int* roi_batch_id_data, T* output_data) {
J
jerrywgz 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

133 134
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
        T val = bilinear_interpolate(offset_input_data, height, width, y, x);
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
167
                                    const T* out_grad, const int num_rois,
J
jerrywgz 已提交
168 169 170 171 172 173 174 175 176
                                    const float spatial_scale,
                                    const int channels, const int height,
                                    const int width, const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    int* roi_batch_id_data, T* input_grad) {
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
177
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
178 179 180 181 182 183 184 185 186
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

187 188
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
189 190 191
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

192
    T* offset_input_grad =
J
jerrywgz 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
207
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
208 209 210
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
211
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
212 213
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
214 215 216 217
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
        bilinear_interpolate_gradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                      &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
218 219 220 221 222 223 224 225 226 227 228 229
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
230
                                  diff4);
J
jerrywgz 已提交
231 232 233 234 235 236 237 238 239 240
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
241
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size, batch_size,
        "The rois_batch_size and imgs batch_size must be the same.");
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                      "The rois_num from input and lod must be the same.");
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopy(roi_batch_id_list, ctx.GetPlace(),
                          ctx.device_context(), &roi_batch_id_list_gpu);
    GPUROIAlignForward<
        T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
        height, width, pooled_height, pooled_width, sampling_ratio,
        roi_batch_id_list_gpu.data<int>(),
        out->mutable_data<T>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

    if (in_grad) {
      Tensor roi_batch_id_list;
      roi_batch_id_list.Resize({rois_num});
      int* roi_batch_id_data =
          roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
      Tensor roi_batch_id_list_gpu;
      framework::TensorCopy(roi_batch_id_list, ctx.GetPlace(),
                            ctx.device_context(), &roi_batch_id_list_gpu);

329
      in_grad->mutable_data<T>(ctx.GetPlace());
J
jerrywgz 已提交
330
      math::SetConstant<Place, T> set_zero;
331
      set_zero(ctx.cuda_device_context(), in_grad, static_cast<T>(0));
J
jerrywgz 已提交
332 333 334 335 336 337 338 339 340 341 342

      int output_grad_size = out_grad->numel();
      int blocks = NumBlocks(output_grad_size);
      int threads = kNumCUDAThreads;

      if (output_grad_size > 0) {
        GPUROIAlignBackward<
            T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
            output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
            spatial_scale, channels, height, width, pooled_height, pooled_width,
            sampling_ratio, roi_batch_id_list_gpu.data<int>(),
343
            in_grad->mutable_data<T>(ctx.GetPlace()));
J
jerrywgz 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);