infrt_api.cc 11.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/api/infrt_api.h"

#include <llvm/ADT/SmallVector.h>
#include <llvm/Support/DynamicLibrary.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
W
Wilber 已提交
20
#include <mlir/IR/BuiltinOps.h>
Y
Yan Chunwei 已提交
21
#include <mlir/Parser.h>
W
Wilber 已提交
22 23
#include <mlir/Pass/PassManager.h>
#include <mlir/Transforms/Passes.h>
Y
Yan Chunwei 已提交
24 25 26 27

#include <unordered_map>
#include <vector>

28
#include "paddle/infrt/backends/host/phi_allocator.h"
Y
Yan Chunwei 已提交
29 30
#include "paddle/infrt/common/global.h"
#include "paddle/infrt/dialect/dense_tensor.h"
31
#include "paddle/infrt/dialect/infrt/ir/infrt_dialect.h"
32
#include "paddle/infrt/dialect/infrt/pass/infrt_op_fuse_pass.h"
Y
Yan Chunwei 已提交
33
#include "paddle/infrt/dialect/mlir_loader.h"
34 35
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
#include "paddle/infrt/dialect/phi/pass/phi_op_convert_pass.h"
Y
Yan Chunwei 已提交
36 37 38 39 40
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"
#include "paddle/infrt/host_context/op_executable.h"
41
#include "paddle/infrt/host_context/paddle_mlir.h"
Y
Yan Chunwei 已提交
42 43 44
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/kernel/basic_kernels.h"
#include "paddle/infrt/kernel/control_flow_kernels.h"
45 46 47
#include "paddle/infrt/kernel/phi/dense_tensor_kernels.h"
#include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launchers.h"
#include "paddle/infrt/kernel/phi/registry.h"
Y
Yan Chunwei 已提交
48 49 50 51 52
#include "paddle/infrt/kernel/tensor_kernels.h"
#include "paddle/infrt/kernel/tensor_shape_kernels.h"
#include "paddle/infrt/kernel/test_kernels.h"
#include "paddle/infrt/tensor/tensor_map.h"

W
Wilber 已提交
53 54
#include "paddle/infrt/dialect/infrt/pass/infrt_weights_unfold_pass.h"

55 56
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
#include "paddle/infrt/kernel/tensorrt/registry.h"
W
Wilber 已提交
57 58 59 60 61 62

#include "paddle/infrt/dialect/tensorrt/trt_graph_fuse_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_graph_split_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_op_converter_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_op_teller_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_type_convert_pass.h"
63 64
#endif

Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
using namespace infrt::host_context;  // NOLINT
using namespace infrt::tensor;        // NOLINT
using namespace infrt::tensor;        // NOLINT

namespace infrt {

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};

  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

/**
 * Execute the mlir program in predict mode.
 */
class PredictExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  PredictExecutor(mlir::ModuleOp module,
                  KernelRegistry* registry,
110
                  ::infrt::phi::DenseTensorMap&& map)
Y
Yan Chunwei 已提交
111 112 113 114
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry_(registry) {
    CHECK(registry_);
115
    Init(std::move(map));
Y
Yan Chunwei 已提交
116 117 118 119 120 121 122 123 124 125
  }

  void Run() {
    auto arguments = llvm::makeArrayRef(arguments_);
    auto results = llvm::makeMutableArrayRef(results_.begin(), results_.size());
    function_executable_->Execute(arguments, results);
  }

  int GetInputNum() { return inputs_.size(); }

126
  ::phi::DenseTensor* GetInput(int i) { return inputs_[i]; }
Y
Yan Chunwei 已提交
127 128 129

  int GetOutputNum() { return outputs_.size(); }

130
  ::phi::DenseTensor* GetOutput(int i) { return outputs_[i]; }
Y
Yan Chunwei 已提交
131 132

 private:
133
  void Init(::infrt::phi::DenseTensorMap&& map) {
Y
Yan Chunwei 已提交
134 135 136
    EmitFunctions();
    llvm::Optional<mlir::FuncOp> predict_func_ = llvm::None;
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
137
      if (func_op.getName().str() != "main_graph") continue;
Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
      predict_func_ = func_op;
      break;
    }
    if (!predict_func_) {
      std::cout << "ERROR: init failed, no predict function found in mlir."
                << std::endl;
      return;
    }
    auto& predict_func = predict_func_.getValue();
    function_executable_ =
        new MlirFunctionExecutable(predict_func, registry_, impl_->func_defs);

    // process parammeters
151 152
    VLOG(3) << "Arguments num of predict func: "
            << predict_func.getNumArguments();
Y
Yan Chunwei 已提交
153 154 155 156
    for (size_t i = 0; i < predict_func.getNumArguments(); ++i) {
      auto arg = predict_func.getArgument(i);
      auto type = arg.getType();
      // this param is TensorMap
157 158
      if (type.isa<::infrt::phi::DenseTensorMapType>()) {
        auto* value = new host_context::Value(std::move(map));
Y
Yan Chunwei 已提交
159 160
        arguments_.push_back(value);
        AddValue(predict_func.getArgument(i), value);
161
      } else if (type.isa<::infrt::DenseTensorType>()) {
Y
Yan Chunwei 已提交
162
        // this param is an input Tensor
163
        auto dht = ::phi::DenseTensor();
Y
Yan Chunwei 已提交
164 165
        auto* value = new host_context::Value(std::move(dht));
        arguments_.push_back(value);
166 167 168
        inputs_.push_back(&(value->get<::phi::DenseTensor>()));
      } else {
        llvm_unreachable("The input type has not been supported by predictor.");
Y
Yan Chunwei 已提交
169 170 171 172 173
      }
    }

    // process results
    auto& last_op = predict_func.front().back();
174
    if (last_op.getName().getStringRef() == "infrt.return") {
Y
Yan Chunwei 已提交
175
      for (size_t i = 0; i < last_op.getNumOperands(); ++i) {
176 177 178 179 180 181 182 183 184 185 186 187
        auto operand = last_op.getOperand(i);
        if (operand.getType().isa<::infrt::DenseTensorType>()) {
          auto r = impl_->value_map.try_emplace(
              operand, ValueRef(new host_context::Value(::phi::DenseTensor())));
          CHECK(r.second) << "Duplicate add mlir value ["
                          << DumpToString(operand) << "]";
          auto* value = r.first->second.get();
          results_.push_back(ValueRef(value));
          outputs_.push_back(&(value->get<::phi::DenseTensor>()));
        } else {
          llvm_unreachable("infrt.return only supports DenseTensor now.");
        }
Y
Yan Chunwei 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
      }
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  KernelRegistry* registry_{};
  MlirFunctionExecutable* function_executable_;
205
  llvm::SmallVector<::phi::DenseTensor*, 1> inputs_;
Y
Yan Chunwei 已提交
206
  llvm::SmallVector<host_context::Value*, 2> arguments_;
207
  llvm::SmallVector<::phi::DenseTensor*, 1> outputs_;
Y
Yan Chunwei 已提交
208 209 210
  llvm::SmallVector<ValueRef, 1> results_;
};

211
std::unique_ptr<InfRtPredictor> CreateInfRtPredictor(
Y
Yan Chunwei 已提交
212
    const InfRtConfig& config) {
213
  auto x = std::make_unique<InfRtPredictor>();
Y
Yan Chunwei 已提交
214 215 216 217 218 219
  x->Init(config);
  return x;
}

struct InfRtPredictor::Impl {
  std::unique_ptr<PredictExecutor> executor;
220
  MLIRModelGenImpl module_gen_;
Y
Yan Chunwei 已提交
221 222 223 224 225 226 227 228
};

InfRtPredictor::InfRtPredictor() : impl_(new Impl) {}
InfRtPredictor::~InfRtPredictor() {}

void InfRtPredictor::Run() { impl_->executor->Run(); }

int InfRtPredictor::Init(const InfRtConfig& config) {
229
  mlir::MLIRContext* context = ::infrt::Global::getMLIRContext();
Y
Yan Chunwei 已提交
230 231 232 233 234 235 236 237

  KernelRegistry* registry = new KernelRegistry();

  kernel::RegisterBasicKernels(registry);
  kernel::RegisterTestKernels(registry);
  kernel::RegisterTensorShapeKernels(registry);
  kernel::RegisterTensorKernels(registry);
  kernel::RegisterControlFlowKernels(registry);
238 239 240 241 242 243 244 245
#ifdef INFRT_WITH_PHI
  kernel::RegisterPhiKernels(registry);
  kernel::RegisterInferShapeLaunchers(registry);
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
  kernel::RegisterTrtKernels(registry);
#endif  // INFRT_WITH_GPU && INFRT_WITH_TRT
#endif

W
Wilber 已提交
246 247 248 249 250 251 252 253
  mlir::ModuleOp module_op;
  if (config.tensorrt_enabled()) {
    module_op = impl_->module_gen_.ImportPaddleModel(
        config.model_dir(), config.param_dir(), false);
  } else {
    module_op = impl_->module_gen_.ImportPaddleModel(config.model_dir(),
                                                     config.param_dir());
  }
254 255 256

  context->loadAllAvailableDialects();
  ::mlir::PassManager pm(context);
W
Wilber 已提交
257 258 259
  ::mlir::OpPassManager& pass_manager = pm.nest<::mlir::FuncOp>();
  if (config.tensorrt_enabled()) {
    pass_manager.addPass(::infrt::CreateInfrtWeightsUnfoldPass());
260
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
W
Wilber 已提交
261 262 263 264 265
    pass_manager.addPass(::infrt::trt::CreateTrtOpTellerPass());
    pass_manager.addPass(::infrt::trt::CreateTrtGraphFusePass());
    pass_manager.addPass(::infrt::trt::CreateTrtGraphSplitPass(1));
    pass_manager.addPass(::infrt::trt::CreateTrtOpConverterPass());
    pass_manager.addPass(::infrt::trt::CreateTrtTypeConvertPass());
266
#endif
W
Wilber 已提交
267 268 269 270 271 272
    pass_manager.addPass(::mlir::createCanonicalizerPass());
  } else {
    std::vector<::infrt::Place> valid_places = {
        {::infrt::TargetType::CPU,
         ::infrt::PrecisionType::FLOAT32,
         ::infrt::LayoutType::NCHW}};
273 274 275 276 277 278
    if (config.gpu_enabled()) {
      valid_places.insert(valid_places.begin(),
                          ::infrt::Place(::infrt::TargetType::GPU,
                                         ::infrt::PrecisionType::FLOAT32,
                                         ::infrt::LayoutType::NCHW));
    }
W
Wilber 已提交
279 280 281
    pass_manager.addPass(CreatePhiOpCvtPass(valid_places));
    pass_manager.addPass(CreateInfrtOpFusePass());
  }
282 283 284 285 286 287 288
  if (mlir::failed(pm.run(module_op))) {
    std::cout << "\npass failed!\n" << std::endl;
    return 4;
  }
#ifndef NDEBUG
  module_op.dump();
#endif  // NDEBUG
Y
Yan Chunwei 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

  // load extra shared library
  for (const std::string& lib_path : config.shared_libs()) {
    std::string err;
    llvm::sys::DynamicLibrary dynLib =
        llvm::sys::DynamicLibrary::getPermanentLibrary(lib_path.c_str(), &err);
    if (!dynLib.isValid()) {
      llvm::errs() << "Load shared library failed. Error: " << err << "\n";
      return 1;
    }
    if (auto reg_sym = dynLib.SearchForAddressOfSymbol("RegisterKernels")) {
      auto reg_func = reinterpret_cast<void (*)(KernelRegistry*)>(reg_sym);
      reg_func(registry);
    } else {
      llvm::outs() << "Symbol \"RegisterKernels\" not found in \"" << lib_path
                   << "\". Skip.\n";
    }
  }

  // Load params
309 310 311 312 313 314 315 316 317 318 319 320
  if (config.gpu_enabled() && !config.tensorrt_enabled()) {
    auto tensor_map = ::infrt::kernel::phi::LoadCombinedParamsToGpu(
        config.model_dir(), config.param_dir());
    impl_->executor.reset(
        new PredictExecutor(module_op, registry, std::move(tensor_map)));

  } else {
    auto tensor_map = ::infrt::kernel::phi::LoadCombinedParameters(
        config.model_dir(), config.param_dir());
    impl_->executor.reset(
        new PredictExecutor(module_op, registry, std::move(tensor_map)));
  }
Y
Yan Chunwei 已提交
321 322 323 324 325 326

  return 0;
}

int InfRtPredictor::GetInputNum() { return impl_->executor->GetInputNum(); }

327
::phi::DenseTensor* InfRtPredictor::GetInput(int i) {
Y
Yan Chunwei 已提交
328 329 330 331 332
  return impl_->executor->GetInput(i);
}

int InfRtPredictor::GetOutputNum() { return impl_->executor->GetOutputNum(); }

333
::phi::DenseTensor* InfRtPredictor::GetOutput(int i) {
Y
Yan Chunwei 已提交
334 335 336 337
  return impl_->executor->GetOutput(i);
}

}  // namespace infrt