infrt_api.cc 10.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/api/infrt_api.h"

#include <llvm/ADT/SmallVector.h>
#include <llvm/Support/DynamicLibrary.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
#include <mlir/Parser.h>

#include <unordered_map>
#include <vector>

25 26
#include "mlir/Pass/PassManager.h"
#include "paddle/infrt/backends/host/phi_allocator.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/infrt/common/global.h"
#include "paddle/infrt/dialect/dense_tensor.h"
29
#include "paddle/infrt/dialect/infrt/ir/infrt_dialect.h"
30
#include "paddle/infrt/dialect/infrt/pass/infrt_op_fuse_pass.h"
Y
Yan Chunwei 已提交
31
#include "paddle/infrt/dialect/mlir_loader.h"
32 33
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
#include "paddle/infrt/dialect/phi/pass/phi_op_convert_pass.h"
Y
Yan Chunwei 已提交
34 35 36 37 38
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"
#include "paddle/infrt/host_context/op_executable.h"
39
#include "paddle/infrt/host_context/paddle_mlir.h"
Y
Yan Chunwei 已提交
40 41 42
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/kernel/basic_kernels.h"
#include "paddle/infrt/kernel/control_flow_kernels.h"
43 44 45
#include "paddle/infrt/kernel/phi/dense_tensor_kernels.h"
#include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launchers.h"
#include "paddle/infrt/kernel/phi/registry.h"
Y
Yan Chunwei 已提交
46 47 48 49 50
#include "paddle/infrt/kernel/tensor_kernels.h"
#include "paddle/infrt/kernel/tensor_shape_kernels.h"
#include "paddle/infrt/kernel/test_kernels.h"
#include "paddle/infrt/tensor/tensor_map.h"

51 52 53 54
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
#include "paddle/infrt/kernel/tensorrt/registry.h"
#endif

Y
Yan Chunwei 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
using namespace infrt::host_context;  // NOLINT
using namespace infrt::tensor;        // NOLINT
using namespace infrt::tensor;        // NOLINT

namespace infrt {

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};

  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

/**
 * Execute the mlir program in predict mode.
 */
class PredictExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  PredictExecutor(mlir::ModuleOp module,
                  KernelRegistry* registry,
100
                  ::infrt::phi::DenseTensorMap&& map)
Y
Yan Chunwei 已提交
101 102 103 104
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry_(registry) {
    CHECK(registry_);
105
    Init(std::move(map));
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114 115
  }

  void Run() {
    auto arguments = llvm::makeArrayRef(arguments_);
    auto results = llvm::makeMutableArrayRef(results_.begin(), results_.size());
    function_executable_->Execute(arguments, results);
  }

  int GetInputNum() { return inputs_.size(); }

116
  ::phi::DenseTensor* GetInput(int i) { return inputs_[i]; }
Y
Yan Chunwei 已提交
117 118 119

  int GetOutputNum() { return outputs_.size(); }

120
  ::phi::DenseTensor* GetOutput(int i) { return outputs_[i]; }
Y
Yan Chunwei 已提交
121 122

 private:
123
  void Init(::infrt::phi::DenseTensorMap&& map) {
Y
Yan Chunwei 已提交
124 125 126
    EmitFunctions();
    llvm::Optional<mlir::FuncOp> predict_func_ = llvm::None;
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
127
      if (func_op.getName().str() != "main_graph") continue;
Y
Yan Chunwei 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
      predict_func_ = func_op;
      break;
    }
    if (!predict_func_) {
      std::cout << "ERROR: init failed, no predict function found in mlir."
                << std::endl;
      return;
    }
    auto& predict_func = predict_func_.getValue();
    function_executable_ =
        new MlirFunctionExecutable(predict_func, registry_, impl_->func_defs);

    // process parammeters
141 142
    VLOG(3) << "Arguments num of predict func: "
            << predict_func.getNumArguments();
Y
Yan Chunwei 已提交
143 144 145 146
    for (size_t i = 0; i < predict_func.getNumArguments(); ++i) {
      auto arg = predict_func.getArgument(i);
      auto type = arg.getType();
      // this param is TensorMap
147 148
      if (type.isa<::infrt::phi::DenseTensorMapType>()) {
        auto* value = new host_context::Value(std::move(map));
Y
Yan Chunwei 已提交
149 150
        arguments_.push_back(value);
        AddValue(predict_func.getArgument(i), value);
151
      } else if (type.isa<::infrt::DenseTensorType>()) {
Y
Yan Chunwei 已提交
152
        // this param is an input Tensor
153
        auto dht = ::phi::DenseTensor();
Y
Yan Chunwei 已提交
154 155
        auto* value = new host_context::Value(std::move(dht));
        arguments_.push_back(value);
156 157 158
        inputs_.push_back(&(value->get<::phi::DenseTensor>()));
      } else {
        llvm_unreachable("The input type has not been supported by predictor.");
Y
Yan Chunwei 已提交
159 160 161 162 163
      }
    }

    // process results
    auto& last_op = predict_func.front().back();
164
    if (last_op.getName().getStringRef() == "infrt.return") {
Y
Yan Chunwei 已提交
165
      for (size_t i = 0; i < last_op.getNumOperands(); ++i) {
166 167 168 169 170 171 172 173 174 175 176 177
        auto operand = last_op.getOperand(i);
        if (operand.getType().isa<::infrt::DenseTensorType>()) {
          auto r = impl_->value_map.try_emplace(
              operand, ValueRef(new host_context::Value(::phi::DenseTensor())));
          CHECK(r.second) << "Duplicate add mlir value ["
                          << DumpToString(operand) << "]";
          auto* value = r.first->second.get();
          results_.push_back(ValueRef(value));
          outputs_.push_back(&(value->get<::phi::DenseTensor>()));
        } else {
          llvm_unreachable("infrt.return only supports DenseTensor now.");
        }
Y
Yan Chunwei 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      }
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  KernelRegistry* registry_{};
  MlirFunctionExecutable* function_executable_;
195
  llvm::SmallVector<::phi::DenseTensor*, 1> inputs_;
Y
Yan Chunwei 已提交
196
  llvm::SmallVector<host_context::Value*, 2> arguments_;
197
  llvm::SmallVector<::phi::DenseTensor*, 1> outputs_;
Y
Yan Chunwei 已提交
198 199 200
  llvm::SmallVector<ValueRef, 1> results_;
};

201
std::unique_ptr<InfRtPredictor> CreateInfRtPredictor(
Y
Yan Chunwei 已提交
202
    const InfRtConfig& config) {
203
  auto x = std::make_unique<InfRtPredictor>();
Y
Yan Chunwei 已提交
204 205 206 207 208 209
  x->Init(config);
  return x;
}

struct InfRtPredictor::Impl {
  std::unique_ptr<PredictExecutor> executor;
210
  MLIRModelGenImpl module_gen_;
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218
};

InfRtPredictor::InfRtPredictor() : impl_(new Impl) {}
InfRtPredictor::~InfRtPredictor() {}

void InfRtPredictor::Run() { impl_->executor->Run(); }

int InfRtPredictor::Init(const InfRtConfig& config) {
219
  mlir::MLIRContext* context = ::infrt::Global::getMLIRContext();
Y
Yan Chunwei 已提交
220 221 222 223 224 225 226 227

  KernelRegistry* registry = new KernelRegistry();

  kernel::RegisterBasicKernels(registry);
  kernel::RegisterTestKernels(registry);
  kernel::RegisterTensorShapeKernels(registry);
  kernel::RegisterTensorKernels(registry);
  kernel::RegisterControlFlowKernels(registry);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#ifdef INFRT_WITH_PHI
  kernel::RegisterPhiKernels(registry);
  kernel::RegisterInferShapeLaunchers(registry);
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
  kernel::RegisterTrtKernels(registry);
#endif  // INFRT_WITH_GPU && INFRT_WITH_TRT
#endif

  auto module_op = impl_->module_gen_.ImportPaddleModel(config.model_dir(),
                                                        config.param_dir());

  context->loadAllAvailableDialects();
  ::mlir::PassManager pm(context);
  ::mlir::OpPassManager& phi_pass_manager = pm.nest<::mlir::FuncOp>();
  std::vector<::infrt::Place> valid_places = {{::infrt::TargetType::CPU,
                                               ::infrt::PrecisionType::FLOAT32,
                                               ::infrt::LayoutType::NCHW}};
245 246
  phi_pass_manager.addPass(CreatePhiOpCvtPass(valid_places));
  phi_pass_manager.addPass(CreateInfrtOpFusePass());
247 248 249 250 251 252 253
  if (mlir::failed(pm.run(module_op))) {
    std::cout << "\npass failed!\n" << std::endl;
    return 4;
  }
#ifndef NDEBUG
  module_op.dump();
#endif  // NDEBUG
Y
Yan Chunwei 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

  // load extra shared library
  for (const std::string& lib_path : config.shared_libs()) {
    std::string err;
    llvm::sys::DynamicLibrary dynLib =
        llvm::sys::DynamicLibrary::getPermanentLibrary(lib_path.c_str(), &err);
    if (!dynLib.isValid()) {
      llvm::errs() << "Load shared library failed. Error: " << err << "\n";
      return 1;
    }
    if (auto reg_sym = dynLib.SearchForAddressOfSymbol("RegisterKernels")) {
      auto reg_func = reinterpret_cast<void (*)(KernelRegistry*)>(reg_sym);
      reg_func(registry);
    } else {
      llvm::outs() << "Symbol \"RegisterKernels\" not found in \"" << lib_path
                   << "\". Skip.\n";
    }
  }

  // Load params
274 275
  auto tensor_map = ::infrt::kernel::phi::LoadCombinedParameters(
      config.model_dir(), config.param_dir());
Y
Yan Chunwei 已提交
276 277 278

  // Create PredictExecutor
  impl_->executor.reset(
279
      new PredictExecutor(module_op, registry, std::move(tensor_map)));
Y
Yan Chunwei 已提交
280 281 282 283 284
  return 0;
}

int InfRtPredictor::GetInputNum() { return impl_->executor->GetInputNum(); }

285
::phi::DenseTensor* InfRtPredictor::GetInput(int i) {
Y
Yan Chunwei 已提交
286 287 288 289 290
  return impl_->executor->GetInput(i);
}

int InfRtPredictor::GetOutputNum() { return impl_->executor->GetOutputNum(); }

291
::phi::DenseTensor* InfRtPredictor::GetOutput(int i) {
Y
Yan Chunwei 已提交
292 293 294 295
  return impl_->executor->GetOutput(i);
}

}  // namespace infrt