nccl_helper.h 11.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#ifdef PADDLE_WITH_NCCL
Y
Yu Yang 已提交
16 17
#pragma once

T
typhoonzero 已提交
18
#include <stdio.h>
Q
qingqing01 已提交
19
#include <memory>
20
#include <string>
21
#include <thread>  // NOLINT
Y
Yu Yang 已提交
22
#include <typeindex>
Q
qingqing01 已提交
23
#include <unordered_map>
24
#include <vector>
W
Wu Yi 已提交
25

Y
Yu Yang 已提交
26
#include "paddle/fluid/framework/data_type.h"
27
#include "paddle/fluid/platform/collective_helper.h"
Y
Yu Yang 已提交
28 29
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/enforce.h"
W
Wu Yi 已提交
30
#include "paddle/fluid/platform/float16.h"
Y
Yu Yang 已提交
31

T
typhoonzero 已提交
32 33
#define NCCL_ID_VARNAME "NCCLID"

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace platform {

Y
Yu Yang 已提交
37 38
inline ncclDataType_t ToNCCLDataType(framework::proto::VarType::Type type) {
  if (type == framework::proto::VarType::FP32) {
Y
Yu Yang 已提交
39
    return ncclFloat;
Y
Yu Yang 已提交
40
  } else if (type == framework::proto::VarType::FP64) {
Y
Yu Yang 已提交
41
    return ncclDouble;
Y
Yu Yang 已提交
42
  } else if (type == framework::proto::VarType::INT32) {
Y
Yu Yang 已提交
43
    return ncclInt;
Y
Yu Yang 已提交
44
  } else if (type == framework::proto::VarType::INT64) {
45
    return ncclInt64;
W
Wu Yi 已提交
46 47
  } else if (type == framework::proto::VarType::FP16) {
    return ncclFloat16;
Y
Yu Yang 已提交
48 49 50 51 52
  } else {
    PADDLE_THROW("Not supported");
  }
}

53 54 55 56 57
// NOTE(minqiyang): according to the ncclGroupEnd documentations:
// https://docs.nvidia.com/deeplearning/sdk/nccl-api/ncclapidoc.html,
// ncclGroupEnd will wait for all communicators to be initialized, which will
// cause blocking problem when a runtime_error was thrown, so try only guard
// NCCL actions when use it.
Y
Yu Yang 已提交
58 59
class NCCLGroupGuard {
 public:
Y
Yu Yang 已提交
60 61 62 63 64
  static std::mutex &NCCLMutex() {
    static std::mutex mtx;
    return mtx;
  }

Y
Yu Yang 已提交
65
  inline NCCLGroupGuard() {
Y
Yu Yang 已提交
66
    NCCLMutex().lock();
67
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclGroupStart());
Y
Yu Yang 已提交
68
  }
Y
Yu Yang 已提交
69

Z
Zeng Jinle 已提交
70
  inline ~NCCLGroupGuard() PADDLE_MAY_THROW {
71
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclGroupEnd());
Y
Yu Yang 已提交
72
    NCCLMutex().unlock();
Y
Yu Yang 已提交
73 74 75
  }
};

Y
Yu Yang 已提交
76 77 78 79 80
struct NCCLContext {
  std::unique_ptr<CUDADeviceContext> ctx_;
  ncclComm_t comm_;

  explicit NCCLContext(int dev_id)
Y
Yu Yang 已提交
81
      : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))), comm_{nullptr} {}
Y
Yu Yang 已提交
82 83

  cudaStream_t stream() const { return ctx_->stream(); }
Q
qingqing01 已提交
84 85
  ncclComm_t comm() const { return comm_; }

Y
Yu Yang 已提交
86
  int device_id() const {
87
    return BOOST_GET_CONST(platform::CUDAPlace, ctx_->GetPlace()).device;
Y
Yu Yang 已提交
88 89 90
  }
};

Y
Yu Yang 已提交
91 92 93 94
struct NCCLContextMap {
  std::unordered_map<int, NCCLContext> contexts_;
  std::vector<int> order_;

T
typhoonzero 已提交
95 96
  explicit NCCLContextMap(const std::vector<platform::Place> &places,
                          ncclUniqueId *nccl_id = nullptr,
Y
Yancey1989 已提交
97
                          size_t num_trainers = 1, size_t trainer_id = 0) {
98
    PADDLE_ENFORCE_EQ(!places.empty(), true);
Y
Yu Yang 已提交
99 100
    order_.reserve(places.size());
    for (auto &p : places) {
101
      int dev_id = BOOST_GET_CONST(CUDAPlace, p).device;
Y
Yu Yang 已提交
102 103 104 105 106 107 108
      order_.emplace_back(dev_id);
      contexts_.emplace(dev_id, NCCLContext(dev_id));
    }
    PADDLE_ENFORCE_EQ(
        order_.size(), contexts_.size(),
        "NCCL Context Map does not support contain two or more same device");

T
typhoonzero 已提交
109
    std::unique_ptr<ncclComm_t[]> comms(new ncclComm_t[order_.size()]);
W
Wu Yi 已提交
110
    // if num_trainers == 1, should create a new nccl id for local comms.
Y
Yancey1989 已提交
111
    if (num_trainers == 1 && nccl_id == nullptr) {
T
typhoonzero 已提交
112
      std::lock_guard<std::mutex> guard(NCCLGroupGuard::NCCLMutex());
113
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclCommInitAll(
T
typhoonzero 已提交
114
          comms.get(), static_cast<int>(order_.size()), order_.data()));
T
typhoonzero 已提交
115
    } else {
W
Wu Yi 已提交
116
      PADDLE_ENFORCE_NOT_NULL(nccl_id);
Y
Yu Yang 已提交
117
      {
T
typhoonzero 已提交
118
        int nranks = num_trainers * order_.size();
T
typhoonzero 已提交
119
        NCCLGroupGuard gurad;
120 121 122 123 124 125 126 127
        for (size_t i = 0; i < order_.size(); ++i) {
          int gpu_id = order_[i];
          int rank;
          if (order_.size() > 1) {
            rank = trainer_id * order_.size() + i;
          } else {
            rank = trainer_id;
          }
128 129
          VLOG(1) << "init nccl rank:" << rank << ", nranks:" << nranks
                  << ", gpu_id:" << gpu_id << ", dev_id:" << order_[i];
130 131
          PADDLE_ENFORCE_CUDA_SUCCESS(cudaSetDevice(gpu_id));
          PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclCommInitRank(
132
              comms.get() + i, nranks, *nccl_id, rank));
T
typhoonzero 已提交
133
        }
Y
Yu Yang 已提交
134
      }
Y
Yu Yang 已提交
135
    }
T
typhoonzero 已提交
136 137 138 139
    int i = 0;
    for (auto &dev_id : order_) {
      contexts_.at(dev_id).comm_ = comms[i++];
    }
Y
Yu Yang 已提交
140 141
  }

Y
Yu Yang 已提交
142 143 144
  NCCLContextMap(const NCCLContextMap &other) = delete;
  NCCLContextMap &operator=(const NCCLContextMap &other) = delete;

Y
Yu Yang 已提交
145 146 147
  CUDADeviceContext *DevCtx(int dev_id) const { return at(dev_id).ctx_.get(); }

  CUDADeviceContext *DevCtx(platform::Place p) const {
148
    return DevCtx(BOOST_GET_CONST(CUDAPlace, p).device);
Y
Yu Yang 已提交
149 150 151
  }

  const NCCLContext &at(platform::Place p) const {
152
    return this->at(BOOST_GET_CONST(CUDAPlace, p).device);
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161 162 163
  }

  const NCCLContext &at(int dev_id) const { return contexts_.at(dev_id); }

  void WaitAll() {
    for (auto &p : contexts_) {
      p.second.ctx_->Wait();
    }
  }
};

164 165 166 167 168 169 170 171 172 173 174
inline std::string GetFlatNCCLVarName(size_t pos) {
  if (pos == 0) {
    return NCCL_ID_VARNAME;
  }
  return string::Sprintf("%s_%d", NCCL_ID_VARNAME, static_cast<int>(pos));
}

inline std::string GetHierarchicalExterNCCLVarName(size_t pos) {
  return string::Sprintf("Hierarchical_exter_%s_%d", NCCL_ID_VARNAME,
                         static_cast<int>(pos));
}
G
gongweibao 已提交
175 176 177
inline std::string GetHierarchicalInterNCCLVarName(size_t pos) {
  return string::Sprintf("Hierarchical_inter_%s_%d", NCCL_ID_VARNAME,
                         static_cast<int>(pos));
178 179
}

180
class NCCLCommunicator {
181
 public:
182
  NCCLCommunicator() {}
Z
Zeng Jinle 已提交
183
  virtual ~NCCLCommunicator() PADDLE_MAY_THROW {}
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

  NCCLContextMap *DefaultFlatCtx() const {
    if (flat_ctxs_.size() == 0) {
      return nullptr;
    }

    return flat_ctxs_[0].get();
  }

  std::vector<std::unique_ptr<NCCLContextMap>> *GetFlatCtxs() {
    return &flat_ctxs_;
  }

  NCCLContextMap *GetFlatCtx(size_t run_order) const {
    return flat_ctxs_[run_order % flat_ctxs_.size()].get();
  }

  NCCLContextMap *GetRunEnvNCCLCtx(size_t run_order,
                                   bool use_hierarchical_allreduce) const {
    if (!use_hierarchical_allreduce) {
      return GetFlatCtx(run_order);
    }

    return GetHierarchicalInterCtx(run_order);
  }

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  /*
   *When nccl inits nccl comm using ncclCommInitAll, it meets error when
   *allreduce ophandle and sync_batch_norm_op use ncclallreduce parallelly. So
   *create a new nccl comm for sync_batch_norm_op. And these codes should be
   *polished with a unified nccl management.
  */
  NCCLContextMap *GetSyncBatchNormCtx(
      framework::Scope *scope, const std::vector<platform::Place> &places) {
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    if (nccl_id_var != nullptr) {
      return DefaultFlatCtx();
    }

    if (sync_batch_norm_ctx_.get() == nullptr) {
      sync_batch_norm_ctx_.reset(new NCCLContextMap(places));
    }
    return sync_batch_norm_ctx_.get();
  }

229 230 231 232 233 234 235
  void InitFlatCtxs(const std::vector<platform::Place> &places,
                    const std::vector<ncclUniqueId *> &nccl_ids,
                    size_t trainers_num, size_t trainer_id) {
    if (nccl_ids.size() == 0) {
      auto ptr = new platform::NCCLContextMap(places);
      VLOG(1) << "init local trainer";
      flat_ctxs_.emplace_back(ptr);
236 237 238 239 240 241 242
    } else {
      for (size_t i = 0; i < nccl_ids.size(); i++) {
        auto ptr = new platform::NCCLContextMap(places, nccl_ids[i],
                                                trainers_num, trainer_id);
        VLOG(1) << "init trainer_id:" << trainer_id << ", comm no:" << i;
        flat_ctxs_.emplace_back(ptr);
      }
243 244
    }

245 246 247 248 249 250 251
    // as Executor have no way to use ncclComm created by ParallelExecutor,
    // we assign all flatten contexts to NCCLCommContext to fix.
    int nranks = static_cast<int>(trainers_num * places.size());
    int nrings = static_cast<int>(flat_ctxs_.size());
    for (int ring_id = 0; ring_id < nrings; ++ring_id) {
      for (size_t p = 0; p < places.size(); ++p) {
        int rank = trainer_id * places.size() + p;
252
        int dev_id = BOOST_GET_CONST(CUDAPlace, places[p]).device;
253 254 255 256
        auto &ctx = flat_ctxs_[ring_id]->contexts_.at(dev_id);
        NCCLCommContext::Instance().AssignNCCLComm(ctx.comm_, nranks, rank,
                                                   dev_id, ring_id);
      }
257 258 259 260
    }
  }

  void InitHierarchicalCtxs(const std::vector<platform::Place> &places,
G
gongweibao 已提交
261 262
                            const std::vector<ncclUniqueId *> &inter_nccl_ids,
                            const std::vector<ncclUniqueId *> &exter_nccl_ids,
263 264 265
                            size_t trainers_num, size_t trainer_id,
                            size_t inter_trainers_num,
                            size_t exter_trainers_num) {
266 267 268 269
    PADDLE_ENFORCE_EQ(trainers_num, inter_trainers_num * exter_trainers_num,
                      "trainers_num:%llu != inter_trainers_num:%llu * "
                      "exter_trainers_num:%llu",
                      trainers_num, inter_trainers_num, exter_trainers_num);
270

271 272
    PADDLE_ENFORCE_GT(inter_trainers_num, 1, "inter_trainers_num:%llu must > 1",
                      inter_trainers_num);
273 274

    int inter_trainer_id = trainer_id % inter_trainers_num;
G
gongweibao 已提交
275 276 277 278 279
    for (size_t i = 0; i < inter_nccl_ids.size(); i++) {
      VLOG(1) << "init inter_trainer_id:" << inter_trainer_id
              << ", comm no:" << i;
      auto local = new NCCLContextMap(places, inter_nccl_ids[i],
                                      inter_trainers_num, inter_trainer_id);
280

G
gongweibao 已提交
281 282
      h_inter_ctxs_.emplace_back(local);
    }
283 284 285 286 287 288 289

    int exter_trainer_id = -1;
    if (trainer_id % inter_trainers_num == 0) {
      exter_trainer_id = trainer_id / inter_trainers_num;
    }

    if (exter_trainer_id >= 0) {
G
gongweibao 已提交
290 291
      for (size_t i = 0; i < exter_nccl_ids.size(); i++) {
        auto ex = new NCCLContextMap(places, exter_nccl_ids[i],
292 293 294 295 296 297 298 299 300 301 302
                                     exter_trainers_num, exter_trainer_id);
        VLOG(1) << "init exter_trainer_id:" << exter_trainer_id
                << ", comm no:" << i;
        h_exter_ctxs_.emplace_back(ex);
      }
    }
  }

  bool NeedExterAllReduce() const { return h_exter_ctxs_.size() > 0; }

  NCCLContextMap *GetHierarchicalInterCtx(size_t run_order) const {
303 304
    PADDLE_ENFORCE(h_inter_ctxs_.size() > 0,
                   "must init hierarchical ctxs first!");
305 306 307 308
    return h_inter_ctxs_[run_order % h_inter_ctxs_.size()].get();
  }

  NCCLContextMap *GetHierarchicalExterCtx(size_t run_order) const {
309 310
    PADDLE_ENFORCE(h_exter_ctxs_.size() > 0,
                   "must init hierarchical ctxs first!");
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    return h_exter_ctxs_[run_order % h_exter_ctxs_.size()].get();
  }

  std::vector<std::unique_ptr<NCCLContextMap>> *GetHierarchicalInterCtxs() {
    return &h_inter_ctxs_;
  }

  std::vector<std::unique_ptr<NCCLContextMap>> *GetHierarchicalExterCtxs() {
    return &h_exter_ctxs_;
  }

 protected:
  // Support multi nccl comm on default nccl ring while NCCLContextMap can't.
  std::vector<std::unique_ptr<NCCLContextMap>> flat_ctxs_;

  // h_inter_ctxs_ and h_exter_ctxs_ are for 2d allreduce.
  // And h_exter_ctxs_ can support multi comm too.
  std::vector<std::unique_ptr<NCCLContextMap>> h_inter_ctxs_;
  std::vector<std::unique_ptr<NCCLContextMap>> h_exter_ctxs_;
330 331 332

  // just used for sync_batch_norm op.
  std::unique_ptr<NCCLContextMap> sync_batch_norm_ctx_;
333 334
};

Y
Yu Yang 已提交
335 336
}  // namespace platform
}  // namespace paddle
P
peizhilin 已提交
337
#endif