yolo_box_op.cc 8.8 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class YoloBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
24 25 26 27
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasInput("ImgSize"), "Input", "ImgSize", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Boxes"), "Output", "Boxes", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Scores"), "Output", "Scores", "YoloBoxOp");
D
dengkaipeng 已提交
28 29

    auto dim_x = ctx->GetInputDim("X");
30
    auto dim_imgsize = ctx->GetInputDim("ImgSize");
D
dengkaipeng 已提交
31 32 33 34
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    int anchor_num = anchors.size() / 2;
    auto class_num = ctx->Attrs().Get<int>("class_num");

X
xiaoting 已提交
35 36 37 38
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, platform::errors::InvalidArgument(
                                           "Input(X) should be a 4-D tensor."
                                           "But received X dimension(%s)",
                                           dim_x.size()));
D
dengkaipeng 已提交
39 40
    PADDLE_ENFORCE_EQ(
        dim_x[1], anchor_num * (5 + class_num),
X
xiaoting 已提交
41 42 43 44 45 46
        platform::errors::InvalidArgument(
            "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
            "+ class_num))."
            "But received dim[1](%s) != (anchor_mask_number * "
            "(5+class_num)(%s).",
            dim_x[1], anchor_num * (5 + class_num)));
47
    PADDLE_ENFORCE_EQ(dim_imgsize.size(), 2,
X
xiaoting 已提交
48 49 50 51
                      platform::errors::InvalidArgument(
                          "Input(ImgSize) should be a 2-D tensor."
                          "But received Imgsize size(%s)",
                          dim_imgsize.size()));
52 53 54 55 56 57
    if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          dim_imgsize[0], dim_x[0],
          platform::errors::InvalidArgument(
              "Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
    }
X
xiaoting 已提交
58 59 60 61 62
    PADDLE_ENFORCE_EQ(
        dim_imgsize[1], 2,
        platform::errors::InvalidArgument("Input(ImgSize) dim[1] should be 2."
                                          "But received imgsize dim[1](%s).",
                                          dim_imgsize[1]));
D
dengkaipeng 已提交
63
    PADDLE_ENFORCE_GT(anchors.size(), 0,
X
xiaoting 已提交
64 65 66 67
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be greater than 0."
                          "But received anchors length(%s).",
                          anchors.size()));
D
dengkaipeng 已提交
68
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
X
xiaoting 已提交
69 70 71 72
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be even integer."
                          "But received anchors length (%s)",
                          anchors.size()));
D
dengkaipeng 已提交
73
    PADDLE_ENFORCE_GT(class_num, 0,
X
xiaoting 已提交
74 75 76 77
                      platform::errors::InvalidArgument(
                          "Attr(class_num) should be an integer greater than 0."
                          "But received class_num (%s)",
                          class_num));
D
dengkaipeng 已提交
78 79 80 81 82 83 84 85 86 87 88 89

    int box_num = dim_x[2] * dim_x[3] * anchor_num;
    std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
    ctx->SetOutputDim("Boxes", framework::make_ddim(dim_boxes));

    std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
    ctx->SetOutputDim("Scores", framework::make_ddim(dim_scores));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
90 91
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
92 93 94 95 96 97 98
  }
};

class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
99 100
             "The input tensor of YoloBox operator is a 4-D tensor with "
             "shape of [N, C, H, W]. The second dimension(C) stores "
D
dengkaipeng 已提交
101 102
             "box locations, confidence score and classification one-hot "
             "keys of each anchor box. Generally, X should be the output "
D
dengkaipeng 已提交
103
             "of YOLOv3 network.");
104 105
    AddInput("ImgSize",
             "The image size tensor of YoloBox operator, "
D
dengkaipeng 已提交
106
             "This is a 2-D tensor with shape of [N, 2]. This tensor holds "
D
dengkaipeng 已提交
107
             "height and width of each input image used for resizing output "
108
             "box in input image scale.");
D
dengkaipeng 已提交
109 110
    AddOutput("Boxes",
              "The output tensor of detection boxes of YoloBox operator, "
D
dengkaipeng 已提交
111 112
              "This is a 3-D tensor with shape of [N, M, 4], N is the "
              "batch num, M is output box number, and the 3rd dimension "
D
dengkaipeng 已提交
113 114
              "stores [xmin, ymin, xmax, ymax] coordinates of boxes.");
    AddOutput("Scores",
D
dengkaipeng 已提交
115 116 117 118
              "The output tensor of detection boxes scores of YoloBox "
              "operator, This is a 3-D tensor with shape of "
              "[N, M, :attr:`class_num`], N is the batch num, M is "
              "output box number.");
D
dengkaipeng 已提交
119 120 121 122 123 124 125 126 127 128 129 130

    AddAttr<int>("class_num", "The number of classes to predict.");
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample_ratio",
                 "The downsample ratio from network input to YoloBox operator "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YoloBox operators.")
        .SetDefault(32);
    AddAttr<float>("conf_thresh",
D
dengkaipeng 已提交
131 132
                   "The confidence scores threshold of detection boxes. "
                   "Boxes with confidence scores under threshold should "
D
dengkaipeng 已提交
133 134
                   "be ignored.")
        .SetDefault(0.01);
135 136 137 138
    AddAttr<bool>("clip_bbox",
                  "Whether clip output bonding box in Input(ImgSize) "
                  "boundary. Default true.")
        .SetDefault(true);
D
dengkaipeng 已提交
139
    AddComment(R"DOC(
D
dengkaipeng 已提交
140
         This operator generates YOLO detection boxes from output of YOLOv3 network.
D
dengkaipeng 已提交
141 142
         
         The output of previous network is in shape [N, C, H, W], while H and W
D
dengkaipeng 已提交
143 144
         should be the same, H and W specify the grid size, each grid point predict 
         given number boxes, this given number, which following will be represented as S,
D
dengkaipeng 已提交
145 146 147
         is specified by the number of anchors. In the second dimension(the channel
         dimension), C should be equal to S * (5 + class_num), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so the 
D
dengkaipeng 已提交
148 149 150 151 152 153
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor 
         box.

         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box 
         predictions should be as follows:
D
dengkaipeng 已提交
154 155

         $$
D
dengkaipeng 已提交
156
         b_x = \\sigma(t_x) + c_x
D
dengkaipeng 已提交
157 158
         $$
         $$
D
dengkaipeng 已提交
159
         b_y = \\sigma(t_y) + c_y
D
dengkaipeng 已提交
160 161
         $$
         $$
D
dengkaipeng 已提交
162
         b_w = p_w e^{t_w}
D
dengkaipeng 已提交
163 164
         $$
         $$
D
dengkaipeng 已提交
165 166 167
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
168 169
         in the equation above, :math:`c_x, c_y` is the left top corner of current grid
         and :math:`p_w, p_h` is specified by anchors.
D
dengkaipeng 已提交
170

D
dengkaipeng 已提交
171 172
         The logistic regression value of the 5th channel of each anchor prediction boxes
         represents the confidence score of each prediction box, and the logistic
D
dengkaipeng 已提交
173
         regression value of the last :attr:`class_num` channels of each anchor prediction 
D
dengkaipeng 已提交
174
         boxes represents the classifcation scores. Boxes with confidence scores less than
D
dengkaipeng 已提交
175
         :attr:`conf_thresh` should be ignored, and box final scores is the product of 
D
dengkaipeng 已提交
176
         confidence scores and classification scores.
D
dengkaipeng 已提交
177

D
dengkaipeng 已提交
178 179 180 181
         $$
         score_{pred} = score_{conf} * score_{class}
         $$

D
dengkaipeng 已提交
182 183 184 185 186 187 188 189
         )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
190 191 192 193
REGISTER_OPERATOR(
    yolo_box, ops::YoloBoxOp, ops::YoloBoxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
194 195
REGISTER_OP_CPU_KERNEL(yolo_box, ops::YoloBoxKernel<float>,
                       ops::YoloBoxKernel<double>);