multiclass_nms_op.cc 21.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/detection/nms_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
29 30 31
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MultiClassNMS");
32

D
dangqingqing 已提交
33
    auto box_dims = ctx->GetInputDim("BBoxes");
34
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
35
    auto score_size = score_dims.size();
36

37
    if (ctx->IsRuntime()) {
J
jerrywgz 已提交
38 39
      PADDLE_ENFORCE(score_size == 2 || score_size == 3,
                     "The rank of Input(Scores) must be 2 or 3");
40
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
X
xiaoting 已提交
41 42 43 44
                        platform::errors::InvalidArgument(
                            "The rank of Input(BBoxes) must be 3"
                            "But receive box_dims size(%s)",
                            box_dims.size()));
J
jerrywgz 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57
      if (score_size == 3) {
        PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                           box_dims[2] == 16 || box_dims[2] == 24 ||
                           box_dims[2] == 32,
                       "The last dimension of Input(BBoxes) must be 4 or 8, "
                       "represents the layout of coordinate "
                       "[xmin, ymin, xmax, ymax] or "
                       "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                       "8 points: [xi, yi] i= 1,2,...,8 or "
                       "12 points: [xi, yi] i= 1,2,...,12 or "
                       "16 points: [xi, yi] i= 1,2,...,16");
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
X
xiaoting 已提交
58 59 60 61 62 63
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input(BBoxes) must be equal to "
                "last dimension of Input(Scores), which represents the "
                "predicted bboxes."
                "But received box_dims[1](%s) != socre_dims[2](%s)",
                box_dims[1], score_dims[2]));
J
jerrywgz 已提交
64
      } else {
X
xiaoting 已提交
65 66 67 68 69
        PADDLE_ENFORCE_EQ(box_dims[2], 4,
                          platform::errors::InvalidArgument(
                              "The last dimension of Input(BBoxes) must be 4"
                              "But received box_dims[2](%s).",
                              box_dims[2]));
J
jerrywgz 已提交
70
        PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
X
xiaoting 已提交
71 72 73 74 75 76 77
                          platform::errors::InvalidArgument(
                              "The 2nd dimension of Input(BBoxes)"
                              "must be equal to the 2nd dimension"
                              " of Input(Scores)"
                              "But received box_dims[1](%s) != "
                              "score_dims[1](%s)",
                              box_dims[1], score_dims[1]));
J
jerrywgz 已提交
78
      }
79
    }
80 81
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
82 83 84 85 86
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
87 88 89
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
90
  }
D
dangqingqing 已提交
91 92 93 94 95

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
96
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
97
        platform::CPUPlace());
D
dangqingqing 已提交
98
  }
99 100
};

101 102 103 104 105 106 107 108 109
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
                   const framework::Tensor& items, const int class_id,
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
110 111 112 113 114 115 116 117 118 119
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
120 121 122
  }
}

123
template <typename T>
D
dangqingqing 已提交
124
class MultiClassNMSKernel : public framework::OpKernel<T> {
125 126 127
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
128 129
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
130 131 132
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
133 134
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
149
      for (size_t k = 0; k < selected_indices->size(); ++k) {
150 151
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
152 153 154
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
155 156 157
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
158 159 160 161
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
162 163 164
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
165
          }
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
181
  void MultiClassNMS(const framework::ExecutionContext& ctx,
182
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
183
                     const int scores_size,
184 185
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
186 187 188
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
189
    bool normalized = ctx.Attr<bool>("normalized");
190 191
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
192
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
193
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
194 195

    int num_det = 0;
196 197 198 199 200 201 202 203 204 205 206 207 208

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
209
      }
210 211 212
      NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
              nms_top_k, &((*indices)[c]), normalized);
      if (scores_size == 2) {
J
jerrywgz 已提交
213 214
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
215
      num_det += (*indices)[c].size();
216 217
    }

218
    *num_nmsed_out = num_det;
219 220
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
221
      const T* sdata;
222
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
223
      for (const auto& it : *indices) {
224
        int label = it.first;
J
jerrywgz 已提交
225
        if (scores_size == 3) {
226
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
227
        } else {
228 229 230
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
231
        }
232
        const std::vector<int>& label_indices = it.second;
233
        for (size_t j = 0; j < label_indices.size(); ++j) {
234 235 236 237 238 239
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
240 241
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
242 243 244 245
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
246
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
247 248 249 250
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
251 252 253 254 255 256 257
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
258 259
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
260 261 262
    }
  }

J
jerrywgz 已提交
263 264
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
265
                        const std::map<int, std::vector<int>>& selected_indices,
266 267
                        const int scores_size, Tensor* outs,
                        int* oindices = nullptr, const int offset = 0) const {
J
jerrywgz 已提交
268
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
269 270
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
271 272 273 274
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
275 276 277
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
278 279 280
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
281 282 283
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
284
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
285 286 287 288 289
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
290
      for (size_t j = 0; j < indices.size(); ++j) {
291
        int idx = indices[j];
J
jerrywgz 已提交
292 293 294 295 296
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
297 298 299
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
300 301 302
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
303 304 305
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
306
        }
Y
Yipeng 已提交
307 308
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
309
        count++;
310 311 312 313 314
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
315 316
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
317
    auto* outs = ctx.Output<LoDTensor>("Out");
318 319
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
320
    auto score_dims = scores->dims();
321
    auto score_size = score_dims.size();
J
jerrywgz 已提交
322
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
323 324 325

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
326 327 328 329
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
330 331 332 333 334 335 336 337 338 339 340 341
    Tensor boxes_slice, scores_slice;
    int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
        auto boxes_lod = boxes->lod().back();
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
342
      }
343 344 345 346 347
      std::map<int, std::vector<int>> indices;
      MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
                    &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
348 349 350 351
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
352 353 354 355 356 357 358 359
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
360 361
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
362 363
      int offset = 0;
      int* oindices = nullptr;
364 365 366 367 368 369
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
370 371 372
          if (return_index) {
            offset = i * score_dims[2];
          }
373 374 375 376
        } else {
          auto boxes_lod = boxes->lod().back();
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
377 378 379
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
380
        }
381 382 383 384
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
385 386 387 388 389
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
390
          MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
391
                           score_dims.size(), &out, oindices, offset);
392 393 394 395 396 397
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);
398 399 400
    if (return_index) {
      index->set_lod(lod);
    }
401 402 403 404
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
405
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
406
 public:
Y
Yu Yang 已提交
407
  void Make() override {
D
dangqingqing 已提交
408
    AddInput("BBoxes",
J
jerrywgz 已提交
409 410
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
411
             "[N, M, 4 or 8 16 24 32] represents the "
412 413
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
414
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
415 416
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
417
    AddInput("Scores",
J
jerrywgz 已提交
418 419
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
420 421 422
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
423 424 425 426
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
427
    AddAttr<int>(
428
        "background_label",
翟飞跃 已提交
429
        "(int, default: 0) "
D
dangqingqing 已提交
430 431
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
432
        .SetDefault(0);
D
dangqingqing 已提交
433 434
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
435 436
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
437 438 439
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
440
                 "confidences after the filtering detections based on "
D
dangqingqing 已提交
441
                 "score_threshold");
442
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
443
                   "(float, default: 0.3) "
D
dangqingqing 已提交
444
                   "The threshold to be used in NMS.")
445 446 447
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
448
                   "The parameter for adaptive NMS.")
449
        .SetDefault(1.0);
D
dangqingqing 已提交
450 451 452 453
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
454
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
455
                  "(bool, default true) "
J
jerrywgz 已提交
456 457
                  "Whether detections are normalized.")
        .SetDefault(true);
458 459 460
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
461 462 463 464 465 466
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
467 468 469 470
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
471
This operator is to do multi-class non maximum suppression (NMS) on a batched
472
of boxes and scores.
D
dangqingqing 已提交
473 474 475 476 477 478
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
479
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
480 481
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
482 483 484
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
485
means there is no detected bbox for this image.
486 487 488 489
)DOC");
  }
};

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
      ctx->SetOutputDim("Index", {box_dims[1], 1});
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
509 510 511
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

527 528 529 530
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
531 532 533 534
REGISTER_OPERATOR(
    multiclass_nms, ops::MultiClassNMSOp, ops::MultiClassNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dangqingqing 已提交
535 536
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
537 538 539 540
REGISTER_OPERATOR(
    multiclass_nms2, ops::MultiClassNMS2Op, ops::MultiClassNMS2OpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
541 542
REGISTER_OP_CPU_KERNEL(multiclass_nms2, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);