multiclass_nms_op.cc 21.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/detection/nms_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
32 33 34
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
35

D
dangqingqing 已提交
36
    auto box_dims = ctx->GetInputDim("BBoxes");
37
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
38
    auto score_size = score_dims.size();
39

40
    if (ctx->IsRuntime()) {
J
jerrywgz 已提交
41 42
      PADDLE_ENFORCE(score_size == 2 || score_size == 3,
                     "The rank of Input(Scores) must be 2 or 3");
43
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
J
jerrywgz 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                        "The rank of Input(BBoxes) must be 3");
      if (score_size == 3) {
        PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                           box_dims[2] == 16 || box_dims[2] == 24 ||
                           box_dims[2] == 32,
                       "The last dimension of Input(BBoxes) must be 4 or 8, "
                       "represents the layout of coordinate "
                       "[xmin, ymin, xmax, ymax] or "
                       "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                       "8 points: [xi, yi] i= 1,2,...,8 or "
                       "12 points: [xi, yi] i= 1,2,...,12 or "
                       "16 points: [xi, yi] i= 1,2,...,16");
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
            "The 2nd dimension of Input(BBoxes) must be equal to "
            "last dimension of Input(Scores), which represents the "
            "predicted bboxes.");
      } else {
        PADDLE_ENFORCE(box_dims[2] == 4,
                       "The last dimension of Input(BBoxes) must be 4");
        PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
                          "The 2nd dimension of Input(BBoxes)"
                          "must be equal to the 2nd dimension"
                          " of Input(Scores)");
      }
69
    }
70 71
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
72 73 74 75 76
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
77 78 79
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
80
  }
D
dangqingqing 已提交
81 82 83 84 85

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
86
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
87
        platform::CPUPlace());
D
dangqingqing 已提交
88
  }
89 90
};

91 92 93 94 95 96 97 98 99
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
                   const framework::Tensor& items, const int class_id,
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
100 101 102 103 104 105 106 107 108 109
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
110 111 112
  }
}

113
template <typename T>
D
dangqingqing 已提交
114
class MultiClassNMSKernel : public framework::OpKernel<T> {
115 116 117
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
118 119
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
120 121 122
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
123 124
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
125 126 127 128 129 130 131 132 133 134 135 136 137 138
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
139
      for (size_t k = 0; k < selected_indices->size(); ++k) {
140 141
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
142 143 144
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
145 146 147
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
148 149 150 151
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
152 153 154
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
155
          }
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
171
  void MultiClassNMS(const framework::ExecutionContext& ctx,
172
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
173
                     const int scores_size,
174 175
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
176 177 178
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
179
    bool normalized = ctx.Attr<bool>("normalized");
180 181
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
182
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
183
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
184 185

    int num_det = 0;
186 187 188 189 190 191 192 193 194 195 196 197 198

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
199
      }
200 201 202
      NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
              nms_top_k, &((*indices)[c]), normalized);
      if (scores_size == 2) {
J
jerrywgz 已提交
203 204
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
205
      num_det += (*indices)[c].size();
206 207
    }

208
    *num_nmsed_out = num_det;
209 210
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
211
      const T* sdata;
212
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
213
      for (const auto& it : *indices) {
214
        int label = it.first;
J
jerrywgz 已提交
215
        if (scores_size == 3) {
216
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
217
        } else {
218 219 220
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
221
        }
222
        const std::vector<int>& label_indices = it.second;
223
        for (size_t j = 0; j < label_indices.size(); ++j) {
224 225 226 227 228 229
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
230 231
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
232 233 234 235
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
236
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
237 238 239 240
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
241 242 243 244 245 246 247
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
248 249
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
250 251 252
    }
  }

J
jerrywgz 已提交
253 254
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
255
                        const std::map<int, std::vector<int>>& selected_indices,
256 257
                        const int scores_size, Tensor* outs,
                        int* oindices = nullptr, const int offset = 0) const {
J
jerrywgz 已提交
258
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
259 260
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
261 262 263 264
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
265 266 267
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
268 269 270
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
271 272 273
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
274
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
275 276 277 278 279
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
280
      for (size_t j = 0; j < indices.size(); ++j) {
281
        int idx = indices[j];
J
jerrywgz 已提交
282 283 284 285 286
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
287 288 289
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
290 291 292
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
293 294 295
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
296
        }
Y
Yipeng 已提交
297 298
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
299
        count++;
300 301 302 303 304
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
305 306
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
307
    auto* outs = ctx.Output<LoDTensor>("Out");
308 309
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
310
    auto score_dims = scores->dims();
311
    auto score_size = score_dims.size();
J
jerrywgz 已提交
312
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
313 314 315

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
316 317 318 319
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
320 321 322 323 324 325 326 327 328 329 330 331
    Tensor boxes_slice, scores_slice;
    int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
        auto boxes_lod = boxes->lod().back();
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
332
      }
333 334 335 336 337
      std::map<int, std::vector<int>> indices;
      MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
                    &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
338 339 340 341
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
342 343 344 345 346 347 348 349
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
350 351
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
352 353
      int offset = 0;
      int* oindices = nullptr;
354 355 356 357 358 359
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
360 361 362
          if (return_index) {
            offset = i * score_dims[2];
          }
363 364 365 366
        } else {
          auto boxes_lod = boxes->lod().back();
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
367 368 369
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
370
        }
371 372 373 374
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
375 376 377 378 379
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
380
          MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
381
                           score_dims.size(), &out, oindices, offset);
382 383 384 385 386 387
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);
388 389 390
    if (return_index) {
      index->set_lod(lod);
    }
391 392 393 394
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
395
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
396
 public:
Y
Yu Yang 已提交
397
  void Make() override {
D
dangqingqing 已提交
398
    AddInput("BBoxes",
J
jerrywgz 已提交
399 400
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
401
             "[N, M, 4 or 8 16 24 32] represents the "
402 403
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
404
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
405 406
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
407
    AddInput("Scores",
J
jerrywgz 已提交
408 409
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
410 411 412
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
413 414 415 416
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
417
    AddAttr<int>(
418
        "background_label",
翟飞跃 已提交
419
        "(int, default: 0) "
D
dangqingqing 已提交
420 421
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
422
        .SetDefault(0);
D
dangqingqing 已提交
423 424
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
425 426
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
427 428 429
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
430
                 "confidences after the filtering detections based on "
D
dangqingqing 已提交
431
                 "score_threshold");
432
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
433
                   "(float, default: 0.3) "
D
dangqingqing 已提交
434
                   "The threshold to be used in NMS.")
435 436 437
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
438
                   "The parameter for adaptive NMS.")
439
        .SetDefault(1.0);
D
dangqingqing 已提交
440 441 442 443
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
444
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
445
                  "(bool, default true) "
J
jerrywgz 已提交
446 447
                  "Whether detections are normalized.")
        .SetDefault(true);
448 449 450
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
451 452 453 454 455 456
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
457 458 459 460
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
461
This operator is to do multi-class non maximum suppression (NMS) on a batched
462
of boxes and scores.
D
dangqingqing 已提交
463 464 465 466 467 468
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
469
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
470 471
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
472 473 474
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
475
means there is no detected bbox for this image.
476 477 478 479
)DOC");
  }
};

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
      ctx->SetOutputDim("Index", {box_dims[1], 1});
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
499 500 501
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

517 518 519 520
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
521 522 523 524
REGISTER_OPERATOR(
    multiclass_nms, ops::MultiClassNMSOp, ops::MultiClassNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dangqingqing 已提交
525 526
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
527 528 529 530
REGISTER_OPERATOR(
    multiclass_nms2, ops::MultiClassNMS2Op, ops::MultiClassNMS2OpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
531 532
REGISTER_OP_CPU_KERNEL(multiclass_nms2, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);