fused_attention_op.cu 21.5 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
#include <cub/cub.cuh>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"

#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/math/math_function.h"

#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    auto *input_x = ctx.Input<Tensor>("X");

    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_bias = ctx.Input<Tensor>("LnBias");
    auto *ln_mean = ctx.Output<Tensor>("LnMean");
    auto *ln_var = ctx.Output<Tensor>("LnVariance");
    auto *ln_out = ctx.Output<Tensor>("LnOut");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *qkv_out = ctx.Output<Tensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<Tensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Output<Tensor>("QKOut");
    auto *qktv_out = ctx.Output<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Output<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<Tensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<Tensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<Tensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<Tensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Output<Tensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<Tensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<Tensor>("Ln2Variance");
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");

    // final output.
    auto *out = ctx.Output<Tensor>("Y");

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *qkv_weight_data = qkv_weight->data<T>();
    auto *qkv_bias_data = qkv_bias->data<T>();
    auto *qkv_out_data = qkv_out->mutable_data<T>(ctx.GetPlace());
    auto *qkv_bias_out_data = qkv_bias_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for FMHA.
    auto *transpose_out_2_data =
        transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *qk_out_data = qk_out->mutable_data<T>(ctx.GetPlace());
    auto *qktv_out_data = qktv_out->mutable_data<T>(ctx.GetPlace());
108 109 110
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : src_mask_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    auto *softmax_out_data = softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *attn_dropout_mask_out_data =
        attn_dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *attn_dropout_out_data =
        attn_dropout_out->mutable_data<T>(ctx.GetPlace());
    auto *fmha_out_data = fmha_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
    auto *out_linear_bias_data = out_linear_bias->data<T>();
    auto *out_linear_out_data = out_linear_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for bias+dropout+residual+layernorm
    auto *dropout_mask_out_data =
        dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *final_out_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
    // (transA, transB, compute_bias) = (false, true, true)
    auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(), false, true,
                                     bsz_seq, output_size, input_size, true);

    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_rate,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, false, bsz_seq,
                      output_size, input_size, false);
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln_epsilon);

    if (pre_layer_norm) {
L
Li Min 已提交
164 165 166 167 168 169 170
      auto *ln_scale_data =
          (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
      auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
      auto *ln_mean_data = ln_mean->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_data = ln_var->mutable_data<U>(ctx.GetPlace());
      auto *ln_out_data = ln_out->mutable_data<T>(ctx.GetPlace());

L
Li Min 已提交
171 172
      layer_norm_compute.ComputeForward(x_data, ln_scale_data, ln_bias_data,
                                        ln_out_data, ln_mean_data, ln_var_data);
L
Li Min 已提交
173 174
      qkv_compute.ComputeForward(qkv_weight, ln_out, qkv_bias, qkv_out,
                                 qkv_bias_out);
L
Li Min 已提交
175
    } else {
L
Li Min 已提交
176 177
      qkv_compute.ComputeForward(qkv_weight, input_x, qkv_bias, qkv_out,
                                 qkv_bias_out);
L
Li Min 已提交
178
    }
179
    fmha_ref_compute.ComputeForward(*qkv_bias_out, src_mask, transpose_out_2,
L
Li Min 已提交
180 181 182
                                    qk_out, src_mask_out, softmax_out,
                                    attn_dropout_mask_out, attn_dropout_out,
                                    qktv_out, fmha_out);
183

L
Li Min 已提交
184 185 186
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
L
Li Min 已提交
187 188
    out_linear_compute.ComputeForward(out_linear_weight, fmha_out, nullptr,
                                      out_linear_out, nullptr);
L
Li Min 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    if (pre_layer_norm) {
      // output = (residual + dropout(input + bias))
      fused_dropout_layernorm_helper.ResidualDropoutBias(
          ctx.cuda_device_context(), out_linear_out_data, x_data,
          out_linear_bias_data, final_out_data, dropout_mask_out_data);
    } else {
      auto *ln_scale_2_data =
          (ln_scale_2 == nullptr ? nullptr : ln_scale_2->data<U>());
      auto *ln_bias_2_data =
          (ln_bias_2 == nullptr ? nullptr : ln_bias_2->data<U>());
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());
      auto *ln_mean_2_data = ln_mean_2->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_2_data = ln_var_2->mutable_data<U>(ctx.GetPlace());
      // output = layernorm(residual + dropout(input + bias))
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
          ctx.cuda_device_context(), out_linear_out_data, x_data,
          out_linear_bias_data, ln_scale_2_data, ln_bias_2_data,
          bias_dropout_residual_out_data, dropout_mask_out_data, final_out_data,
          ln_mean_2_data, ln_var_2_data);
    }
L
Li Min 已提交
210 211 212
  }
};

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
template <typename T>
class FusedAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float ln2epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_prob = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");

    // get inputs.
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *d_y_data = d_y->data<T>();

    // fw input
    auto *input_x = ctx.Input<Tensor>("X");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_2_scale = ctx.Input<Tensor>("Ln2Scale");
    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_2_scale_data =
        (ln_2_scale == nullptr ? nullptr : ln_2_scale->data<U>());
    // fw parameters.
    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
    auto *qkv_weight_data = qkv_weight->data<T>();
    auto *qkv_bias_data = qkv_bias->data<T>();
    auto *out_linear_weight_data = out_linear_weight->data<T>();
    auto *out_linear_bias_data = out_linear_bias->data<T>();

    // fw output
    auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
    auto *transpose_out_2 = ctx.Input<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Input<Tensor>("QKOut");
    auto *qktv_out = ctx.Input<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Input<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Input<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Input<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Input<Tensor>("SrcMaskOut");
    auto *out_linear_out = ctx.Input<Tensor>("OutLinearOut");
    auto *ln_2_mean = ctx.Input<Tensor>("Ln2Mean");
    auto *ln_2_var = ctx.Input<Tensor>("Ln2Variance");
    auto *dropout_mask_out = ctx.Input<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Input<Tensor>("BiasDropoutResidualOut");
    auto *fmha_out_data = fmha_out->data<T>();
    auto *transpose_out_2_data = transpose_out_2->data<T>();
    auto *qk_out_data = qk_out->data<T>();
    auto *qktv_out_data = qktv_out->data<T>();
    auto *softmax_out_data = softmax_out->data<T>();
276 277
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr : src_mask_out->data<T>();
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    auto *out_linear_out_data = out_linear_out->data<T>();
    auto *dropout_mask_out_data = dropout_mask_out->data<uint8_t>();

    // output's grad
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_qkv_out = ctx.Output<Tensor>(framework::GradVarName("QKVOut"));
    auto *d_qkv_bias_out =
        ctx.Output<Tensor>(framework::GradVarName("QKVBiasOut"));
    auto *d_qktv_out = ctx.Output<Tensor>(framework::GradVarName("QKTVOut"));
    auto *d_transpose_out_2 =
        ctx.Output<Tensor>(framework::GradVarName("TransposeOut2"));
    auto *d_qk_out = ctx.Output<Tensor>(framework::GradVarName("QKOut"));
    auto *d_softmax_out =
        ctx.Output<Tensor>(framework::GradVarName("SoftmaxOut"));
    auto *d_attn_dropout_out =
        ctx.Output<Tensor>(framework::GradVarName("AttnDropoutOut"));
    auto *d_src_mask_out =
        ctx.Output<Tensor>(framework::GradVarName("SrcMaskOut"));
    auto *d_fmha_out = ctx.Output<Tensor>(framework::GradVarName("FMHAOut"));
    auto *d_out_linear_out =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearOut"));
    auto *d_bias_dropout_residual_out =
        ctx.Output<Tensor>(framework::GradVarName("BiasDropoutResidualOut"));
    auto *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
    auto *d_qkv_out_data = d_qkv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_qkv_bias_out_data = d_qkv_bias_out->mutable_data<T>(ctx.GetPlace());
    auto *d_qktv_out_data = d_qktv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_transpose_out_2_data =
        d_transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *d_qk_out_data = d_qk_out->mutable_data<T>(ctx.GetPlace());
    auto *d_softmax_out_data = d_softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *d_attn_dropout_out_data =
        d_attn_dropout_out->mutable_data<T>(ctx.GetPlace());
311 312 313
    auto *d_src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : d_src_mask_out->mutable_data<T>(ctx.GetPlace());
314 315 316 317 318 319 320 321 322 323 324 325 326
    auto *d_fmha_out_data = d_fmha_out->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_out_data =
        d_out_linear_out->mutable_data<T>(ctx.GetPlace());

    // parameter grad
    auto *d_qkv_weight = ctx.Output<Tensor>(framework::GradVarName("QKVW"));
    auto *d_qkv_bias = ctx.Output<Tensor>(framework::GradVarName("QKVBias"));
    auto *d_out_linear_weight =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearW"));
    auto *d_out_linear_bias =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearBias"));
    auto *d_ln_2_scale = ctx.Output<Tensor>(framework::GradVarName("Ln2Scale"));
    auto *d_ln_2_bias = ctx.Output<Tensor>(framework::GradVarName("Ln2Bias"));
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    auto *d_qkv_weight_data = d_qkv_weight->mutable_data<T>(ctx.GetPlace());
    auto *d_qkv_bias_data = d_qkv_bias->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_weight_data =
        d_out_linear_weight->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_bias_data =
        d_out_linear_bias->mutable_data<T>(ctx.GetPlace());

    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];
    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    Tensor d_residual;
    d_residual.Resize(input_x_dims);
    T *d_residual_data = d_residual.mutable_data<T>(ctx.GetPlace());

    bool transA = false;
    bool transB = true;
    bool compute_bias = true;
    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
                      output_size, input_size, compute_bias);
    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_prob,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);
    output_size = hidden_size;
    transA = false;
    transB = false;
    compute_bias = false;
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
                      output_size, input_size, compute_bias);
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln2epsilon);

L
Li Min 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, dropout_mask_out_data,
          d_out_linear_out_data, d_residual_data, d_out_linear_bias_data);
    } else {
      auto *ln_2_mean_data = ln_2_mean->data<U>();
      auto *ln_2_var_data = ln_2_var->data<U>();
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->data<T>();
      auto *d_ln_2_scale_data =
          (d_ln_2_scale == nullptr ? nullptr : d_ln_2_scale->mutable_data<U>(
                                                   ctx.GetPlace()));
      auto *d_ln_2_bias_data =
          (d_ln_2_bias == nullptr ? nullptr : d_ln_2_bias->mutable_data<U>(
                                                  ctx.GetPlace()));
      auto *d_bias_dropout_residual_out_data =
          d_bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());

      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, bias_dropout_residual_out_data,
          dropout_mask_out_data, ln_2_scale_data, ln_2_mean_data, ln_2_var_data,
          d_bias_dropout_residual_out_data, d_ln_2_scale_data, d_ln_2_bias_data,
          d_out_linear_out_data, d_out_linear_bias_data, d_residual_data);
    }
403

L
Li Min 已提交
404 405 406 407
    out_linear_compute.ComputeBackward(fmha_out, out_linear_weight,
                                       d_out_linear_out, d_fmha_out,
                                       d_out_linear_weight, nullptr);

408
    fmha_ref_compute.ComputeBackward(
409
        *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
410 411 412 413 414 415 416 417
        *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
        d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
        d_transpose_out_2, nullptr, d_qkv_bias_out);
    cudaMemcpyAsync(d_qkv_out_data, d_qkv_bias_out_data,
                    bsz_seq * 3 * num_head * dim_head * sizeof(T),
                    cudaMemcpyDeviceToDevice);

    if (pre_layer_norm) {
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
      auto *ln_mean = ctx.Input<Tensor>("LnMean");
      auto *ln_var = ctx.Input<Tensor>("LnVariance");
      auto *ln_out = ctx.Input<Tensor>("LnOut");
      auto *ln_mean_data = ln_mean->data<U>();
      auto *ln_var_data = ln_var->data<U>();
      auto *ln_out_data = ln_out->data<T>();

      auto *d_ln_out = ctx.Output<Tensor>(framework::GradVarName("LnOut"));
      auto *d_ln_scale = ctx.Output<Tensor>(framework::GradVarName("LnScale"));
      auto *d_ln_bias = ctx.Output<Tensor>(framework::GradVarName("LnBias"));
      auto *d_ln_out_data = d_ln_out->mutable_data<T>(ctx.GetPlace());
      auto *d_ln_scale_data =
          (d_ln_scale == nullptr ? nullptr
                                 : d_ln_scale->mutable_data<U>(ctx.GetPlace()));
      auto *d_ln_bias_data =
          (d_ln_bias == nullptr ? nullptr
                                : d_ln_bias->mutable_data<U>(ctx.GetPlace()));

L
Li Min 已提交
436 437
      qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_bias_out, d_ln_out,
                                  d_qkv_weight, d_qkv_bias);
438 439 440 441
      layer_norm_compute.ComputeBackward(x_data, d_ln_out_data, ln_scale_data,
                                         ln_mean_data, ln_var_data, d_x_data,
                                         d_ln_scale_data, d_ln_bias_data);
    } else {
L
Li Min 已提交
442 443
      qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_bias_out, d_x,
                                  d_qkv_weight, d_qkv_bias);
444 445 446 447 448 449 450 451 452 453 454 455 456 457
    }
    // gradient accumulation
    std::vector<const Tensor *> ins;
    std::vector<Tensor *> outs;
    ins.emplace_back(&d_residual);
    ins.emplace_back(d_x);
    outs.emplace_back(d_x);
    int elewise_add_axis = -1;
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
        ctx.cuda_device_context(), ins, &outs, elewise_add_axis,
        AddFunctor<T>());
  }
};

L
Li Min 已提交
458 459 460 461 462 463 464 465
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(fused_attention, ops::FusedAttentionOpKernel<float>,
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);
466 467 468 469
REGISTER_OP_CUDA_KERNEL(fused_attention_grad,
                        ops::FusedAttentionGradKernel<float>,
                        ops::FusedAttentionGradKernel<double>,
                        ops::FusedAttentionGradKernel<plat::float16>);