npu_op_runner.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/npu_op_runner.h"

#include <paddle/fluid/framework/data_type.h>
18
#include <paddle/fluid/framework/operator.h>
19 20 21 22 23 24

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
25 26
#include "acl/acl_op_compiler.h"

27 28 29 30 31
#include "paddle/fluid/framework/framework.pb.h"

namespace paddle {
namespace operators {

32 33 34 35 36 37 38 39 40
static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

L
Leo Chen 已提交
67
aclrtStream GetCurrentNPUStream() {
L
Leo Chen 已提交
68
  int device_id = platform::GetCurrentNPUDeviceId();
L
Leo Chen 已提交
69
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
70 71
  auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
      pool.Get(platform::NPUPlace(device_id)));
L
Leo Chen 已提交
72 73 74
  return dev_ctx->stream();
}

75 76 77 78
NpuOpRunner::NpuOpRunner(std::string op_type) : op_type_(op_type) {
  attr_ = aclopCreateAttr();
}

79 80
NpuOpRunner::NpuOpRunner(std::string op_type, const std::vector<Tensor> &inputs,
                         const std::vector<Tensor> &outputs,
81
                         const NPUAttributeMap &attrs)
82
    : op_type_(op_type) {
83
  attr_ = aclopCreateAttr();
84 85 86 87 88 89
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
90
  // TODO(zhiqiu): handle free
91 92 93 94 95
}

const std::string &NpuOpRunner::Type() { return op_type_; }

NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
96
                                  const NPUAttribute &attr) {
97 98 99 100 101 102 103 104
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
105 106
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
107 108 109 110 111 112
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
113
    for (auto it : a) {
114 115
      cast_a.push_back(static_cast<uint8_t>(it));
    }
116 117
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
118 119 120
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
121
    for (auto it : a) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
146 147 148 149 150 151 152 153
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
154 155
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
156 157 158 159 160 161 162
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

163
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
}

NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

247 248 249
std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}
250

251 252 253
std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}
254 255 256 257 258 259

aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor) {
  auto dtype = ConvertToNpuDtype(tensor.type());
  auto format = ConvertToNpuFormat(tensor.layout());
  auto dims = framework::vectorize(tensor.dims());

L
Leo Chen 已提交
260
  VLOG(4) << "NPU dtype:" << dtype << " "
261 262
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
263

264 265 266
  auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format);
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
267 268 269
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
  PADDLE_ENFORCE_NPU_SUCCESS(
      aclSetTensorStorageShape(desc, dims.size(), dims.data()));
270 271 272 273
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
274
  void *ptr = tensor.data<void>();
L
Leo Chen 已提交
275
  VLOG(4) << "NPU ptr: " << ptr << ", size: " << tensor.memory_size();
276
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
277 278 279 280 281 282
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

void NpuOpRunner::Run(aclrtStream stream) {
L
Leo Chen 已提交
283 284 285 286 287
  if (!stream) {
    VLOG(4) << "Run with default current npu stream: " << stream;
    stream = GetCurrentNPUStream();
  }

288 289 290 291
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "attr: " << attr_;
L
Leo Chen 已提交
292 293
  VLOG(4) << "stream: " << stream;

294 295 296 297 298
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
299
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
300 301 302 303
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
}  // namespace operators
}  // namespace paddle