npu_op_runner.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/npu_op_runner.h"

#include <paddle/fluid/framework/data_type.h>
18
#include <paddle/fluid/framework/operator.h>
19 20 21 22 23 24

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
25 26
#include "acl/acl_op_compiler.h"

27 28 29 30 31
#include "paddle/fluid/framework/framework.pb.h"

namespace paddle {
namespace operators {

32 33 34 35 36 37 38 39 40
static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

67 68 69 70
NpuOpRunner::NpuOpRunner(std::string op_type) : op_type_(op_type) {
  attr_ = aclopCreateAttr();
}

71 72
NpuOpRunner::NpuOpRunner(std::string op_type, const std::vector<Tensor> &inputs,
                         const std::vector<Tensor> &outputs,
73
                         const NPUAttributeMap &attrs)
74
    : op_type_(op_type) {
75
  attr_ = aclopCreateAttr();
76 77 78 79 80 81
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
82
  // TODO(zhiqiu): handle free
83 84 85 86 87
}

const std::string &NpuOpRunner::Type() { return op_type_; }

NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
88
                                  const NPUAttribute &attr) {
89 90 91 92 93 94 95 96
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
97 98
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
99 100 101 102 103 104
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
105
    for (auto it : a) {
106 107
      cast_a.push_back(static_cast<uint8_t>(it));
    }
108 109
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
110 111 112
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
113
    for (auto it : a) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
138 139 140 141 142 143 144 145
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
146 147
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
148 149 150 151 152 153 154
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

155
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
}

// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
}

NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

239 240 241
std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}
242

243 244 245
std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}
246 247 248 249 250 251

aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor) {
  auto dtype = ConvertToNpuDtype(tensor.type());
  auto format = ConvertToNpuFormat(tensor.layout());
  auto dims = framework::vectorize(tensor.dims());

252 253 254
  VLOG(4) << "dtype:" << dtype << " "
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
255

256 257 258
  auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format);
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
259 260 261
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
  PADDLE_ENFORCE_NPU_SUCCESS(
      aclSetTensorStorageShape(desc, dims.size(), dims.data()));
262 263 264 265
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
266 267 268
  void *ptr = tensor.data<void>();
  VLOG(4) << "ptr: " << ptr << ", size: " << tensor.memory_size();
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
269 270 271 272 273 274
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

void NpuOpRunner::Run(aclrtStream stream) {
275 276 277 278 279 280 281 282 283 284
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "stream: " << stream;
  VLOG(4) << "attr: " << attr_;
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
285
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
286 287 288 289
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
}  // namespace operators
}  // namespace paddle