evaluators.html 35.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
9
    <title>Base &#8212; PaddlePaddle  documentation</title>
Y
Yu Yang 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
    
    <link rel="stylesheet" href="../../../_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../../',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../../_static/doctools.js"></script>
    <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html" />
Y
Yu Yang 已提交
28
    <link rel="up" title="Evaluators" href="evaluators_index.html" />
Y
Yu Yang 已提交
29
    <link rel="next" title="Parameter and Extra Layer Attribute" href="attrs.html" />
Y
Yu Yang 已提交
30
    <link rel="prev" title="Evaluators" href="evaluators_index.html" /> 
Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="attrs.html" title="Parameter and Extra Layer Attribute"
             accesskey="N">next</a> |</li>
        <li class="right" >
Y
Yu Yang 已提交
46
          <a href="evaluators_index.html" title="Evaluators"
Y
Yu Yang 已提交
47
             accesskey="P">previous</a> |</li>
48 49 50 51
        <li class="nav-item nav-item-0"><a href="../../../index.html">PaddlePaddle  documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../../index.html" >User Interface</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="index.html" >Model Config Interface</a> &#187;</li>
          <li class="nav-item nav-item-3"><a href="evaluators_index.html" accesskey="U">Evaluators</a> &#187;</li> 
Y
Yu Yang 已提交
52 53 54 55 56 57 58 59
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
Y
Yu Yang 已提交
60 61 62 63 64 65
  <div class="section" id="base">
<h1>Base<a class="headerlink" href="#base" title="Permalink to this headline"></a></h1>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">evaluator_base</code><span class="sig-paren">(</span><em>input</em>, <em>type</em>, <em>label=None</em>, <em>weight=None</em>, <em>name=None</em>, <em>chunk_scheme=None</em>, <em>num_chunk_types=None</em>, <em>classification_threshold=0.5</em>, <em>positive_label=-1</em>, <em>dict_file=''</em>, <em>result_file=''</em>, <em>num_results=1</em>, <em>delimited=True</em><span class="sig-paren">)</span></dt>
<dd><p>Evaluator will evaluate the network status while training/testing.</p>
Y
Yu Yang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
<p>User can use evaluator by classify/regression job. For example.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">classify</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">output</span><span class="p">,</span> <span class="n">evaluator</span><span class="o">=</span><span class="n">classification_error_evaluator</span><span class="p">)</span>
</pre></div>
</div>
<p>And user could define evaluator separately as follow.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">classification_error_evaluator</span><span class="p">(</span><span class="s2">&quot;ErrorRate&quot;</span><span class="p">,</span> <span class="n">prediction</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<p>The evaluator often contains a name parameter. It will also be printed when
evaluating network. The printed information may look like the following.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
classification_error_evaluator=0.4486
CurrentEval: ErrorRate=0.3964
</pre></div>
</div>
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>list|LayerOutput</em>) &#8211; Input layers, a object of LayerOutput or a list of
LayerOutput.</li>
<li><strong>label</strong> (<em>LayerOutput|None</em>) &#8211; An input layer containing the ground truth label.</li>
<li><strong>weight</strong> (<em>LayerOutput.</em>) &#8211; An input layer which is a weight for each sample.
Each evaluator may calculate differently to use this weight.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="classification">
<h1>Classification<a class="headerlink" href="#classification" title="Permalink to this headline"></a></h1>
<div class="section" id="classification-error-evaluator">
<h2>classification_error_evaluator<a class="headerlink" href="#classification-error-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
103
<dl class="function">
Y
Yu Yang 已提交
104 105
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">classification_error_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
<dd><p>Classification Error Evaluator. It will print error rate for classification.</p>
<p>The classification error is:</p>
<div class="math">
\[classification\_error = \frac{NumOfWrongPredicts}{NumOfAllSamples}\]</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span>  <span class="n">classification_error_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prob</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>basestring</em>) &#8211; Label layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. And will just multiply to NumOfWrongPredicts
and NumOfAllSamples. So, the elements of weight are all one,
then means not set weight. The larger weight it is, the more
important this sample is.</li>
<li><strong>threshold</strong> (<em>float</em>) &#8211; The classification threshold.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">None.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
138 139 140
</div>
<div class="section" id="auc-evaluator">
<h2>auc_evaluator<a class="headerlink" href="#auc-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
141
<dl class="function">
Y
Yu Yang 已提交
142 143
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">auc_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
<dd><p>Auc Evaluator which adapts to binary classification.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">auc_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>None|basestring</em>) &#8211; Label layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1].</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
Y
Yu Yang 已提交
167 168
<div class="section" id="ctc-error-evaluator">
<h2>ctc_error_evaluator<a class="headerlink" href="#ctc-error-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
169
<dl class="function">
Y
Yu Yang 已提交
170 171
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">ctc_error_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
172 173
<dd><p>This evaluator is to calculate sequence-to-sequence edit distance.</p>
<p>The simple usage is :</p>
174
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">ctc_error_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
183 184 185
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer. Should be the same as the input for ctc_layer.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; input label, which is a data_layer. Should be the same as the
label for ctc_layer</li>
Y
Yu Yang 已提交
186 187 188 189 190 191 192
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
193 194 195
</div>
<div class="section" id="chunk-evaluator">
<h2>chunk_evaluator<a class="headerlink" href="#chunk-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
196
<dl class="function">
Y
Yu Yang 已提交
197 198
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">chunk_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
<dd><p>Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates the chunk detection F1 score.</p>
<p>A chunk is correctly detected if its beginning, end and type are correct.
Other chunk type is ignored.</p>
<p>For each label in the label sequence, we have:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">tagType</span> <span class="o">=</span> <span class="n">label</span> <span class="o">%</span> <span class="n">numTagType</span>
<span class="n">chunkType</span> <span class="o">=</span> <span class="n">label</span> <span class="o">/</span> <span class="n">numTagType</span>
<span class="n">otherChunkType</span> <span class="o">=</span> <span class="n">numChunkTypes</span>
</pre></div>
</div>
<p>The total number of different labels is numTagType*numChunkTypes+1.
We support 4 labelling scheme.
The tag type for each of the scheme is shown as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">Scheme</span> <span class="n">Begin</span> <span class="n">Inside</span> <span class="n">End</span>   <span class="n">Single</span>
<span class="n">plain</span>  <span class="mi">0</span>     <span class="o">-</span>      <span class="o">-</span>     <span class="o">-</span>
<span class="n">IOB</span>    <span class="mi">0</span>     <span class="mi">1</span>      <span class="o">-</span>     <span class="o">-</span>
<span class="n">IOE</span>    <span class="o">-</span>     <span class="mi">0</span>      <span class="mi">1</span>     <span class="o">-</span>
<span class="n">IOBES</span>  <span class="mi">0</span>     <span class="mi">1</span>      <span class="mi">2</span>     <span class="mi">3</span>
</pre></div>
</div>
<p>&#8216;plain&#8217; means the whole chunk must contain exactly the same chunk label.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">chunk_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layers.</li>
<li><strong>name</strong> (<em>basename|None</em>) &#8211; The Evaluator name, it is not necessary.</li>
<li><strong>chunk_scheme</strong> (<em>basestring</em>) &#8211; The labelling schemes support 4 types. It is one of
&#8220;IOB&#8221;, &#8220;IOE&#8221;, &#8220;IOBES&#8221;, &#8220;plain&#8221;.This Evaluator must
contain this chunk_scheme.</li>
<li><strong>num_chunk_types</strong> &#8211; number of chunk types other than &#8220;other&#8221;</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
242 243 244
</div>
<div class="section" id="precision-recall-evaluator">
<h2>precision_recall_evaluator<a class="headerlink" href="#precision-recall-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
245
<dl class="function">
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">precision_recall_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>An Evaluator to calculate precision and recall, F1-score.
It is adapt to the task with multiple labels.</p>
<ul class="simple">
<li>If positive_label=-1, it will print the average precision, recall,
F1-score of all labels.</li>
<li>If use specify positive_label, it will print the precision, recall,
F1-score of this label.</li>
</ul>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">precision_recall_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer name.</li>
<li><strong>positive_label</strong> (<em>LayerOutput.</em>) &#8211; The input label layer.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="rank">
<h1>Rank<a class="headerlink" href="#rank" title="Permalink to this headline"></a></h1>
<div class="section" id="pnpair-evaluator">
<h2>pnpair_evaluator<a class="headerlink" href="#pnpair-evaluator" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">pnpair_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">pnpair_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">info</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer name.</li>
<li><strong>info</strong> (<em>LayerOutput</em>) &#8211; Label layer name. (TODO, explaination)</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="utils">
<h1>Utils<a class="headerlink" href="#utils" title="Permalink to this headline"></a></h1>
<div class="section" id="sum-evaluator">
<h2>sum_evaluator<a class="headerlink" href="#sum-evaluator" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">sum_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
<dd><p>An Evaluator to sum the result of input.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">sum_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
341 342 343
</div>
<div class="section" id="column-sum-evaluator">
<h2>column_sum_evaluator<a class="headerlink" href="#column-sum-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
344
<dl class="function">
Y
Yu Yang 已提交
345 346
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">column_sum_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
<dd><p>This Evaluator is used to sum the last column of input.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">column_sum_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
366 367 368 369 370 371
</div>
</div>
<div class="section" id="print">
<h1>Print<a class="headerlink" href="#print" title="Permalink to this headline"></a></h1>
<div class="section" id="classification-error-printer-evaluator">
<h2>classification_error_printer_evaluator<a class="headerlink" href="#classification-error-printer-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
372
<dl class="function">
Y
Yu Yang 已提交
373 374 375
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">classification_error_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print the classification error of each sample.</p>
Y
Yu Yang 已提交
376
<p>The simple usage is:</p>
Y
Yu Yang 已提交
377
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">classification_error_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
Y
Yu Yang 已提交
378 379 380 381 382 383 384
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
Y
Yu Yang 已提交
385 386
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Input label layer.</li>
Y
Yu Yang 已提交
387 388 389 390 391 392 393 394
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
395 396 397
</div>
<div class="section" id="gradient-printer-evaluator">
<h2>gradient_printer_evaluator<a class="headerlink" href="#gradient-printer-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
398
<dl class="function">
Y
Yu Yang 已提交
399 400
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">gradient_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
<dd><p>This Evaluator is used to print the gradient of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">gradient_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; One or more input layers.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
421 422 423
</div>
<div class="section" id="maxid-printer-evaluator">
<h2>maxid_printer_evaluator<a class="headerlink" href="#maxid-printer-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
424
<dl class="function">
Y
Yu Yang 已提交
425 426
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">maxid_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
<dd><p>This Evaluator is used to print maximum top k values and their indexes
of each row of input layers. It contains one or more input layers.
k is specified by num_results.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxid_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>num_results</strong> (<em>int.</em>) &#8211; This number is used to specify the top k numbers.
It is 1 by default.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
450 451 452
</div>
<div class="section" id="maxframe-printer-evaluator">
<h2>maxframe_printer_evaluator<a class="headerlink" href="#maxframe-printer-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
453
<dl class="function">
Y
Yu Yang 已提交
454 455
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">maxframe_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
<dd><p>This Evaluator is used to print the top k frames of each input layers.
The input layers should contain sequences info or sequences type.
k is specified by num_results.
It contains one or more input layers.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The width of each frame is 1.</p>
</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxframe_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
482 483 484
</div>
<div class="section" id="seqtext-printer-evaluator">
<h2>seqtext_printer_evaluator<a class="headerlink" href="#seqtext-printer-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
485
<dl class="function">
Y
Yu Yang 已提交
486 487
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">seqtext_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
<dd><p>Sequence text printer will print text according to index matrix and a
dictionary. There can be multiple input to this layer:</p>
<p>1. If there is only one input, the input must be a matrix containing
the sequence of indices;</p>
<p>2. If there are more than one input, the first input should be ids,
and are interpreted as sample ids.</p>
<p>The output format will be:</p>
<ol class="arabic simple">
<li>sequence without sub-sequence, and there is probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">prob</span> <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>sequence without sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="3">
<li>sequence with sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
                <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
<span class="o">...</span>
</pre></div>
</div>
<p>Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
with maxid (when generating) as an input.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">seqtext_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                                 <span class="n">dict_file</span><span class="o">=</span><span class="n">dict_file</span><span class="p">,</span>
                                 <span class="n">result_file</span><span class="o">=</span><span class="n">result_file</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>dict_file</strong> (<em>basestring</em>) &#8211; The input dictionary which contains a list of tokens.</li>
<li><strong>result_file</strong> (<em>basestring</em>) &#8211; The file is to save the results.</li>
<li><strong>delimited</strong> (<em>bool</em>) &#8211; Whether to use space to separate output tokens.
Default is True. No space is added if set to False.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
541 542 543
</div>
<div class="section" id="value-printer-evaluator">
<h2>value_printer_evaluator<a class="headerlink" href="#value-printer-evaluator" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
544
<dl class="function">
Y
Yu Yang 已提交
545 546 547 548
<dt>
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">value_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This Evaluator is used to print the values of input layers. It contains
one or more input layers.</p>
Y
Yu Yang 已提交
549
<p>The simple usage is:</p>
Y
Yu Yang 已提交
550
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">value_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
Y
Yu Yang 已提交
551 552 553 554 555 556 557
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
Y
Yu Yang 已提交
558
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; One or more input layers.</li>
Y
Yu Yang 已提交
559 560 561 562 563 564 565 566
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
567
</div>
Y
Yu Yang 已提交
568 569 570 571 572 573 574 575
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
Y
Yu Yang 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
  <h3><a href="../../../index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">Base</a></li>
<li><a class="reference internal" href="#classification">Classification</a><ul>
<li><a class="reference internal" href="#classification-error-evaluator">classification_error_evaluator</a></li>
<li><a class="reference internal" href="#auc-evaluator">auc_evaluator</a></li>
<li><a class="reference internal" href="#ctc-error-evaluator">ctc_error_evaluator</a></li>
<li><a class="reference internal" href="#chunk-evaluator">chunk_evaluator</a></li>
<li><a class="reference internal" href="#precision-recall-evaluator">precision_recall_evaluator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#rank">Rank</a><ul>
<li><a class="reference internal" href="#pnpair-evaluator">pnpair_evaluator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#utils">Utils</a><ul>
<li><a class="reference internal" href="#sum-evaluator">sum_evaluator</a></li>
<li><a class="reference internal" href="#column-sum-evaluator">column_sum_evaluator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#print">Print</a><ul>
<li><a class="reference internal" href="#classification-error-printer-evaluator">classification_error_printer_evaluator</a></li>
<li><a class="reference internal" href="#gradient-printer-evaluator">gradient_printer_evaluator</a></li>
<li><a class="reference internal" href="#maxid-printer-evaluator">maxid_printer_evaluator</a></li>
<li><a class="reference internal" href="#maxframe-printer-evaluator">maxframe_printer_evaluator</a></li>
<li><a class="reference internal" href="#seqtext-printer-evaluator">seqtext_printer_evaluator</a></li>
<li><a class="reference internal" href="#value-printer-evaluator">value_printer_evaluator</a></li>
</ul>
</li>
</ul>

Y
Yu Yang 已提交
607
  <h4>Previous topic</h4>
Y
Yu Yang 已提交
608 609
  <p class="topless"><a href="evaluators_index.html"
                        title="previous chapter">Evaluators</a></p>
Y
Yu Yang 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622
  <h4>Next topic</h4>
  <p class="topless"><a href="attrs.html"
                        title="next chapter">Parameter and Extra Layer Attribute</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="../../../_sources/ui/api/trainer_config_helpers/evaluators.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="../../../search.html" method="get">
623 624
      <div><input type="text" name="q" /></div>
      <div><input type="submit" value="Go" /></div>
Y
Yu Yang 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="attrs.html" title="Parameter and Extra Layer Attribute"
             >next</a> |</li>
        <li class="right" >
Y
Yu Yang 已提交
647
          <a href="evaluators_index.html" title="Evaluators"
Y
Yu Yang 已提交
648
             >previous</a> |</li>
649 650 651 652
        <li class="nav-item nav-item-0"><a href="../../../index.html">PaddlePaddle  documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../../index.html" >User Interface</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="index.html" >Model Config Interface</a> &#187;</li>
          <li class="nav-item nav-item-3"><a href="evaluators_index.html" >Evaluators</a> &#187;</li> 
Y
Yu Yang 已提交
653 654 655
      </ul>
    </div>
    <div class="footer" role="contentinfo">
656 657
        &#169; Copyright 2016, PaddlePaddle developers.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.6.
Y
Yu Yang 已提交
658 659 660
    </div>
  </body>
</html>