evaluators.html 31.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Evaluators &mdash; PaddlePaddle  documentation</title>
    
    <link rel="stylesheet" href="../../../_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../../',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../../_static/doctools.js"></script>
    <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html" />
    <link rel="up" title="Trainer Config Helpers" href="index.html" />
    <link rel="next" title="Parameter and Extra Layer Attribute" href="attrs.html" />
    <link rel="prev" title="Networks" href="networks.html" /> 
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="attrs.html" title="Parameter and Extra Layer Attribute"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="networks.html" title="Networks"
             accesskey="P">previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="../../../index.html">PaddlePaddle  documentation</a> &raquo;</li>
          <li class="nav-item nav-item-1"><a href="../../index.html" >User Interface</a> &raquo;</li>
          <li class="nav-item nav-item-2"><a href="index.html" accesskey="U">Trainer Config Helpers</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <div class="section" id="module-paddle.trainer_config_helpers.evaluators">
<span id="evaluators"></span><h1>Evaluators<a class="headerlink" href="#module-paddle.trainer_config_helpers.evaluators" title="Permalink to this headline"></a></h1>
<p>Evaluator will evaluate the network status while training/testing.</p>
<p>User can use evaluator by classify/regression job. For example.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">classify</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">output</span><span class="p">,</span> <span class="n">evaluator</span><span class="o">=</span><span class="n">classification_error_evaluator</span><span class="p">)</span>
</pre></div>
</div>
<p>And user could define evaluator separately as follow.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">classification_error_evaluator</span><span class="p">(</span><span class="s2">&quot;ErrorRate&quot;</span><span class="p">,</span> <span class="n">prediction</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<p>The evaluator often contains a name parameter. It will also be printed when
evaluating network. The printed information may look like the following.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
classification_error_evaluator=0.4486
CurrentEval: ErrorRate=0.3964
</pre></div>
</div>
<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.classification_error_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">classification_error_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.classification_error_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>Classification Error Evaluator. It will print error rate for classification.</p>
<p>The classification error is:</p>
<div class="math">
\[classification\_error = \frac{NumOfWrongPredicts}{NumOfAllSamples}\]</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span>  <span class="n">classification_error_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prob</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>basestring</em>) &#8211; Label layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. And will just multiply to NumOfWrongPredicts
and NumOfAllSamples. So, the elements of weight are all one,
then means not set weight. The larger weight it is, the more
important this sample is.</li>
<li><strong>threshold</strong> (<em>float</em>) &#8211; The classification threshold.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">None.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.auc_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">auc_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.auc_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>Auc Evaluator which adapts to binary classification.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">auc_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>None|basestring</em>) &#8211; Label layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1].</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.pnpair_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">pnpair_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.pnpair_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">pnpair_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">info</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer name.</li>
<li><strong>info</strong> (<em>LayerOutput</em>) &#8211; Label layer name. (TODO, explaination)</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.precision_recall_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">precision_recall_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.precision_recall_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>An Evaluator to calculate precision and recall, F1-score.
It is adapt to the task with multiple labels.</p>
<ul class="simple">
<li>If positive_label=-1, it will print the average precision, recall,
F1-score of all labels.</li>
<li>If use specify positive_label, it will print the precision, recall,
F1-score of this label.</li>
</ul>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">precision_recall_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name. The output prediction of network.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer name.</li>
<li><strong>positive_label</strong> (<em>LayerOutput.</em>) &#8211; The input label layer.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.ctc_error_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">ctc_error_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.ctc_error_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This evaluator is to calculate sequence-to-sequence edit distance.</p>
<p>The simple usage is :</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">ctc_error_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.chunk_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">chunk_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.chunk_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates the chunk detection F1 score.</p>
<p>A chunk is correctly detected if its beginning, end and type are correct.
Other chunk type is ignored.</p>
<p>For each label in the label sequence, we have:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">tagType</span> <span class="o">=</span> <span class="n">label</span> <span class="o">%</span> <span class="n">numTagType</span>
<span class="n">chunkType</span> <span class="o">=</span> <span class="n">label</span> <span class="o">/</span> <span class="n">numTagType</span>
<span class="n">otherChunkType</span> <span class="o">=</span> <span class="n">numChunkTypes</span>
</pre></div>
</div>
<p>The total number of different labels is numTagType*numChunkTypes+1.
We support 4 labelling scheme.
The tag type for each of the scheme is shown as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">Scheme</span> <span class="n">Begin</span> <span class="n">Inside</span> <span class="n">End</span>   <span class="n">Single</span>
<span class="n">plain</span>  <span class="mi">0</span>     <span class="o">-</span>      <span class="o">-</span>     <span class="o">-</span>
<span class="n">IOB</span>    <span class="mi">0</span>     <span class="mi">1</span>      <span class="o">-</span>     <span class="o">-</span>
<span class="n">IOE</span>    <span class="o">-</span>     <span class="mi">0</span>      <span class="mi">1</span>     <span class="o">-</span>
<span class="n">IOBES</span>  <span class="mi">0</span>     <span class="mi">1</span>      <span class="mi">2</span>     <span class="mi">3</span>
</pre></div>
</div>
<p>&#8216;plain&#8217; means the whole chunk must contain exactly the same chunk label.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">chunk_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layers.</li>
<li><strong>name</strong> (<em>basename|None</em>) &#8211; The Evaluator name, it is not necessary.</li>
<li><strong>chunk_scheme</strong> (<em>basestring</em>) &#8211; The labelling schemes support 4 types. It is one of
&#8220;IOB&#8221;, &#8220;IOE&#8221;, &#8220;IOBES&#8221;, &#8220;plain&#8221;.This Evaluator must
contain this chunk_scheme.</li>
<li><strong>num_chunk_types</strong> &#8211; number of chunk types other than &#8220;other&#8221;</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.sum_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">sum_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.sum_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>An Evaluator to sum the result of input.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">sum_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.column_sum_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">column_sum_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.column_sum_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This Evaluator is used to sum the last column of input.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">column_sum_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.value_printer_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">value_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.value_printer_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This Evaluator is used to print the values of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">value_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; One or more input layers.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.gradient_printer_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">gradient_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.gradient_printer_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This Evaluator is used to print the gradient of input layers. It contains
one or more input layers.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">gradient_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; One or more input layers.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.maxid_printer_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">maxid_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.maxid_printer_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This Evaluator is used to print maximum top k values and their indexes
of each row of input layers. It contains one or more input layers.
k is specified by num_results.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxid_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>num_results</strong> (<em>int.</em>) &#8211; This number is used to specify the top k numbers.
It is 1 by default.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.maxframe_printer_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">maxframe_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.maxframe_printer_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This Evaluator is used to print the top k frames of each input layers.
The input layers should contain sequences info or sequences type.
k is specified by num_results.
It contains one or more input layers.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The width of each frame is 1.</p>
</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">maxframe_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.seqtext_printer_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">seqtext_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.seqtext_printer_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>Sequence text printer will print text according to index matrix and a
dictionary. There can be multiple input to this layer:</p>
<p>1. If there is only one input, the input must be a matrix containing
the sequence of indices;</p>
<p>2. If there are more than one input, the first input should be ids,
and are interpreted as sample ids.</p>
<p>The output format will be:</p>
<ol class="arabic simple">
<li>sequence without sub-sequence, and there is probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">prob</span> <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>sequence without sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_seq</span>
</pre></div>
</div>
<ol class="arabic simple" start="3">
<li>sequence with sub-sequence, and there is not probability.</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">id</span>      <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
                <span class="n">space_seperated_tokens_from_dictionary_according_to_sub_seq</span>
<span class="o">...</span>
</pre></div>
</div>
<p>Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
with maxid (when generating) as an input.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">seqtext_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                                 <span class="n">dict_file</span><span class="o">=</span><span class="n">dict_file</span><span class="p">,</span>
                                 <span class="n">result_file</span><span class="o">=</span><span class="n">result_file</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput|list</em>) &#8211; Input Layer name.</li>
<li><strong>dict_file</strong> (<em>basestring</em>) &#8211; The input dictionary which contains a list of tokens.</li>
<li><strong>result_file</strong> (<em>basestring</em>) &#8211; The file is to save the results.</li>
<li><strong>delimited</strong> (<em>bool</em>) &#8211; Whether to use space to separate output tokens.
Default is True. No space is added if set to False.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt id="paddle.trainer_config_helpers.evaluators.classification_error_printer_evaluator">
<code class="descclassname">paddle.trainer_config_helpers.evaluators.</code><code class="descname">classification_error_printer_evaluator</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer_config_helpers.evaluators.classification_error_printer_evaluator" title="Permalink to this definition"></a></dt>
<dd><p>This Evaluator is used to print the classification error of each sample.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">eval</span> <span class="o">=</span> <span class="n">classification_error_printer_evaluator</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Input label layer.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; Evaluator name.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
  <h4>Previous topic</h4>
  <p class="topless"><a href="networks.html"
                        title="previous chapter">Networks</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="attrs.html"
                        title="next chapter">Parameter and Extra Layer Attribute</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="../../../_sources/ui/api/trainer_config_helpers/evaluators.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="../../../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="attrs.html" title="Parameter and Extra Layer Attribute"
             >next</a> |</li>
        <li class="right" >
          <a href="networks.html" title="Networks"
             >previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="../../../index.html">PaddlePaddle  documentation</a> &raquo;</li>
          <li class="nav-item nav-item-1"><a href="../../index.html" >User Interface</a> &raquo;</li>
          <li class="nav-item nav-item-2"><a href="index.html" >Trainer Config Helpers</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &copy; Copyright 2016, PaddlePaddle developers.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.5.
    </div>
  </body>
</html>