test_tensorrt.cc 5.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15
#include <cuda_runtime_api.h>
Y
Yan Chunwei 已提交
16 17
#include <glog/logging.h>
#include <gtest/gtest.h>
18

Y
Yan Chunwei 已提交
19
#include "NvInfer.h"
20
#include "paddle/fluid/inference/tensorrt/helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26
#include "paddle/fluid/platform/dynload/tensorrt.h"

namespace dy = paddle::platform::dynload;

class Logger : public nvinfer1::ILogger {
 public:
27 28
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    switch (severity) {
      case Severity::kINFO:
        LOG(INFO) << msg;
        break;
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }
};

class ScopedWeights {
 public:
48
  explicit ScopedWeights(float value) : value_(value) {
Y
Yan Chunwei 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62
    w.type = nvinfer1::DataType::kFLOAT;
    w.values = &value_;
    w.count = 1;
  }
  const nvinfer1::Weights& get() { return w; }

 private:
  float value_;
  nvinfer1::Weights w;
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
63
nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
64
  return static_cast<nvinfer1::IBuilder*>(
65
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
66
}
67
nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
68
  return static_cast<nvinfer1::IRuntime*>(
69
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
70 71 72 73 74 75 76 77 78
}

const char* kInputTensor = "input";
const char* kOutputTensor = "output";

// Creates a network to compute y = 2x + 3
nvinfer1::IHostMemory* CreateNetwork() {
  Logger logger;
  // Create the engine.
79
  nvinfer1::IBuilder* builder = createInferBuilder(&logger);
80
  auto config = builder->createBuilderConfig();
Y
Yan Chunwei 已提交
81 82 83
  ScopedWeights weights(2.);
  ScopedWeights bias(3.);

84
  nvinfer1::INetworkDefinition* network = builder->createNetworkV2(0U);
Y
Yan Chunwei 已提交
85
  // Add the input
86 87
  auto input = network->addInput(
      kInputTensor, nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 1, 1});
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97
  EXPECT_NE(input, nullptr);
  // Add the hidden layer.
  auto layer = network->addFullyConnected(*input, 1, weights.get(), bias.get());
  EXPECT_NE(layer, nullptr);
  // Mark the output.
  auto output = layer->getOutput(0);
  output->setName(kOutputTensor);
  network->markOutput(*output);
  // Build the engine.
  builder->setMaxBatchSize(1);
98 99 100
#if IS_TRT_VERSION_GE(8300)
  config->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, 1 << 10);
#else
101
  config->setMaxWorkspaceSize(1 << 10);
102
#endif
103
  auto engine = builder->buildEngineWithConfig(*network, *config);
Y
Yan Chunwei 已提交
104 105 106 107 108 109 110 111 112
  EXPECT_NE(engine, nullptr);
  // Serialize the engine to create a model, then close.
  nvinfer1::IHostMemory* model = engine->serialize();
  network->destroy();
  engine->destroy();
  builder->destroy();
  return model;
}

113 114
void Execute(nvinfer1::IExecutionContext* context,
             const float* input,
Y
Yan Chunwei 已提交
115
             float* output) {
116
  const nvinfer1::ICudaEngine& engine = context->getEngine();
Y
Yan Chunwei 已提交
117 118 119 120 121 122 123 124 125 126 127
  // Two binds, input and output
  ASSERT_EQ(engine.getNbBindings(), 2);
  const int input_index = engine.getBindingIndex(kInputTensor);
  const int output_index = engine.getBindingIndex(kOutputTensor);
  // Create GPU buffers and a stream
  void* buffers[2];
  ASSERT_EQ(0, cudaMalloc(&buffers[input_index], sizeof(float)));
  ASSERT_EQ(0, cudaMalloc(&buffers[output_index], sizeof(float)));
  cudaStream_t stream;
  ASSERT_EQ(0, cudaStreamCreate(&stream));
  // Copy the input to the GPU, execute the network, and copy the output back.
128 129 130 131 132 133
  ASSERT_EQ(0,
            cudaMemcpyAsync(buffers[input_index],
                            input,
                            sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream));
134
  context->enqueue(1, buffers, stream, nullptr);
135 136 137 138 139 140
  ASSERT_EQ(0,
            cudaMemcpyAsync(output,
                            buffers[output_index],
                            sizeof(float),
                            cudaMemcpyDeviceToHost,
                            stream));
Y
Yan Chunwei 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154
  cudaStreamSynchronize(stream);

  // Release the stream and the buffers
  cudaStreamDestroy(stream);
  ASSERT_EQ(0, cudaFree(buffers[input_index]));
  ASSERT_EQ(0, cudaFree(buffers[output_index]));
}

TEST(TensorrtTest, BasicFunction) {
  // Create the network serialized model.
  nvinfer1::IHostMemory* model = CreateNetwork();

  // Use the model to create an engine and an execution context.
  Logger logger;
155
  nvinfer1::IRuntime* runtime = createInferRuntime(&logger);
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163
  nvinfer1::ICudaEngine* engine =
      runtime->deserializeCudaEngine(model->data(), model->size(), nullptr);
  model->destroy();
  nvinfer1::IExecutionContext* context = engine->createExecutionContext();

  // Execute the network.
  float input = 1234;
  float output;
164
  Execute(context, &input, &output);
Y
Yan Chunwei 已提交
165 166 167 168 169 170 171
  EXPECT_EQ(output, input * 2 + 3);

  // Destroy the engine.
  context->destroy();
  engine->destroy();
  runtime->destroy();
}