batch_fc_op.cu 8.4 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16

S
ShenLiang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/batch_fc_op.h"
19 20
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
21
#include "paddle/phi/kernels/funcs/blas/blas.h"
S
ShenLiang 已提交
22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {
using framework::Tensor;

const int CUDA_NUM_THREADS = 1024;
static inline int GET_BLOCKS(const int N) {
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

template <typename T>
33 34
__global__ void add_bias_kernel(
    T* data, int slot_pairs_num, int ins_num, int out_dim, const T* bias) {
S
ShenLiang 已提交
35 36 37 38 39 40 41 42 43 44
  CUDA_KERNEL_LOOP(idx, slot_pairs_num * ins_num * out_dim) {
    int block_len = ins_num * out_dim;
    int slot_index = idx / block_len;
    int out_dim_index = (idx % block_len) % out_dim;
    T temp = data[idx] + bias[slot_index * out_dim + out_dim_index];
    data[idx] = temp;
  }
}

template <typename T>
45 46 47 48 49 50
void add_bias(gpuStream_t stream,
              T* data,
              int slot_pairs_num,
              int ins_num,
              int out_dim,
              const T* bias) {
S
ShenLiang 已提交
51
  add_bias_kernel<<<GET_BLOCKS(slot_pairs_num * ins_num * out_dim),
52 53 54
                    CUDA_NUM_THREADS,
                    0,
                    stream>>>(data, slot_pairs_num, ins_num, out_dim, bias);
S
ShenLiang 已提交
55 56 57
}

template <typename T>
58 59 60 61 62
__global__ void add_bias_grad_kernel(const T* dout_data,
                                     int slot_pairs_num,
                                     int ins_num,
                                     int out_dim,
                                     T* db_data) {
S
ShenLiang 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
  CUDA_KERNEL_LOOP(idx, slot_pairs_num * out_dim) {
    int row = idx / out_dim;
    int col = idx % out_dim;
    T temp = static_cast<T>(0);
    for (int i = 0; i < ins_num; ++i) {
      int select_indx = ((row + 1) * i + 1) * col;
      temp += dout_data[select_indx];
    }
    db_data[idx] += temp;
  }
}

template <typename T>
76 77 78 79 80 81 82 83 84 85 86
void add_bias_grad(gpuStream_t stream,
                   const T* dout_data,
                   int slot_pairs_num,
                   int ins_num,
                   int out_dim,
                   T* db_data) {
  add_bias_grad_kernel<<<GET_BLOCKS(slot_pairs_num * out_dim),
                         CUDA_NUM_THREADS,
                         0,
                         stream>>>(
      dout_data, slot_pairs_num, ins_num, out_dim, db_data);
S
ShenLiang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
}

template <typename DeviceContext, typename T>
class BatchFCCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // X.dim = slot_pairs_num * ins_num * in_dim
    // W.dim = slot_pairs_num * in_dim * out_dim
    // b.dim = slot_pairs_num * out_dim
    // output.dim = slot_pairs_num * ins_num * out_dim
    auto* input = ctx.Input<framework::LoDTensor>("Input");
    auto* w = ctx.Input<Tensor>("W");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* output = ctx.Output<framework::LoDTensor>("Out");
    auto input_dims = input->dims();
    auto w_dims = w->dims();
    auto slot_pairs_num = input_dims[0];
    auto ins_num = input_dims[1];
    auto in_dim = input_dims[2];
    auto out_dim = w_dims[2];

    // get data ptr
    const T* in_data = input->data<T>();
    const T* w_data = w->data<T>();
    const T* bias_data = bias->data<T>();

    output->Resize({slot_pairs_num, ins_num, out_dim});
    T* out_data = output->mutable_data<T>(ctx.GetPlace());
    // initialize
    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
    out_eigen.device(place) = out_eigen.constant(static_cast<T>(0));

    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasNoTrans;

    T alpha = 1;
    T beta = 0;
    int64_t strideA = ins_num * in_dim;
    int64_t strideB = in_dim * out_dim;

130
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    blas.BatchedGEMM(transA,
                     transB,
                     ins_num,
                     out_dim,
                     in_dim,
                     alpha,
                     in_data,
                     w_data,
                     beta,
                     out_data,
                     slot_pairs_num,
                     strideA,
                     strideB);
    add_bias<T>(ctx.cuda_device_context().stream(),
                out_data,
                slot_pairs_num,
                ins_num,
                out_dim,
                bias_data);
S
ShenLiang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  }
};

template <typename DeviceContext, typename T>
class BatchFCGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* w = ctx.Input<Tensor>("W");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto* dw = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto* db = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto input_dims = input->dims();
    auto w_dims = w->dims();
    auto slot_pairs_num = input_dims[0];
    auto ins_num = input_dims[1];
    auto in_dim = input_dims[2];
    auto out_dim = w_dims[2];

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
    // initialize
    dx->mutable_data<T>(ctx.GetPlace());
    auto dx_eigen = framework::EigenVector<T>::Flatten(*dx);
    dx_eigen.device(place) = dx_eigen.constant(static_cast<T>(0));

    dw->mutable_data<T>(ctx.GetPlace());
    auto dw_eigen = framework::EigenVector<T>::Flatten(*dw);
    dw_eigen.device(place) = dw_eigen.constant(static_cast<T>(0));

    // get data ptr
    const T* x_data = input->data<T>();
    const T* w_data = w->data<T>();
    const T* dout_data = dout->data<T>();
    T* dx_data = dx->data<T>();
    T* dw_data = dw->data<T>();

    db->mutable_data<T>(ctx.GetPlace());
    auto db_eigen = framework::EigenVector<T>::Flatten(*db);
    db_eigen.device(place) = db_eigen.constant(static_cast<T>(0));
    T* db_data = db->data<T>();
195 196 197 198 199 200
    add_bias_grad<T>(ctx.cuda_device_context().stream(),
                     dout_data,
                     slot_pairs_num,
                     ins_num,
                     out_dim,
                     db_data);
S
ShenLiang 已提交
201

202
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
S
ShenLiang 已提交
203 204 205 206
    T alpha = 1;
    T beta = 0;

    // dx = dout_data * y^T
207 208 209 210 211 212 213 214 215 216 217 218 219
    blas.BatchedGEMM(CblasNoTrans,
                     CblasTrans,
                     ins_num,
                     in_dim,
                     out_dim,
                     alpha,
                     dout_data,
                     w_data,
                     beta,
                     dx_data,
                     slot_pairs_num,
                     ins_num * out_dim,
                     out_dim * in_dim);
S
ShenLiang 已提交
220
    // dy = x^T * dout_data
221 222 223 224 225 226 227 228 229 230 231 232 233
    blas.BatchedGEMM(CblasTrans,
                     CblasNoTrans,
                     in_dim,
                     out_dim,
                     ins_num,
                     alpha,
                     x_data,
                     dout_data,
                     beta,
                     dw_data,
                     slot_pairs_num,
                     in_dim * ins_num,
                     ins_num * out_dim);
S
ShenLiang 已提交
234 235 236 237 238 239 240 241
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using GPUCtx = paddle::platform::CUDADeviceContext;
242 243
REGISTER_OP_CUDA_KERNEL(batch_fc,
                        ops::BatchFCCUDAKernel<GPUCtx, float>,
S
ShenLiang 已提交
244 245 246 247 248
                        ops::BatchFCCUDAKernel<GPUCtx, double>);

REGISTER_OP_CUDA_KERNEL(batch_fc_grad,
                        ops::BatchFCGradOpCUDAKernel<GPUCtx, float>,
                        ops::BatchFCGradOpCUDAKernel<GPUCtx, double>);