batch_fc_op.cu 7.4 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/batch_fc_op.h"
18 19
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20
#include "paddle/phi/kernels/funcs/blas/blas.h"
S
ShenLiang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {
using framework::Tensor;

const int CUDA_NUM_THREADS = 1024;
static inline int GET_BLOCKS(const int N) {
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

template <typename T>
__global__ void add_bias_kernel(T* data, int slot_pairs_num, int ins_num,
                                int out_dim, const T* bias) {
  CUDA_KERNEL_LOOP(idx, slot_pairs_num * ins_num * out_dim) {
    int block_len = ins_num * out_dim;
    int slot_index = idx / block_len;
    int out_dim_index = (idx % block_len) % out_dim;
    T temp = data[idx] + bias[slot_index * out_dim + out_dim_index];
    data[idx] = temp;
  }
}

template <typename T>
44
void add_bias(gpuStream_t stream, T* data, int slot_pairs_num, int ins_num,
S
ShenLiang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
              int out_dim, const T* bias) {
  add_bias_kernel<<<GET_BLOCKS(slot_pairs_num * ins_num * out_dim),
                    CUDA_NUM_THREADS, 0, stream>>>(data, slot_pairs_num,
                                                   ins_num, out_dim, bias);
}

template <typename T>
__global__ void add_bias_grad_kernel(const T* dout_data, int slot_pairs_num,
                                     int ins_num, int out_dim, T* db_data) {
  CUDA_KERNEL_LOOP(idx, slot_pairs_num * out_dim) {
    int row = idx / out_dim;
    int col = idx % out_dim;
    T temp = static_cast<T>(0);
    for (int i = 0; i < ins_num; ++i) {
      int select_indx = ((row + 1) * i + 1) * col;
      temp += dout_data[select_indx];
    }
    db_data[idx] += temp;
  }
}

template <typename T>
67
void add_bias_grad(gpuStream_t stream, const T* dout_data, int slot_pairs_num,
S
ShenLiang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
                   int ins_num, int out_dim, T* db_data) {
  add_bias_grad_kernel<<<GET_BLOCKS(slot_pairs_num * out_dim), CUDA_NUM_THREADS,
                         0, stream>>>(dout_data, slot_pairs_num, ins_num,
                                      out_dim, db_data);
}

template <typename DeviceContext, typename T>
class BatchFCCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // X.dim = slot_pairs_num * ins_num * in_dim
    // W.dim = slot_pairs_num * in_dim * out_dim
    // b.dim = slot_pairs_num * out_dim
    // output.dim = slot_pairs_num * ins_num * out_dim
    auto* input = ctx.Input<framework::LoDTensor>("Input");
    auto* w = ctx.Input<Tensor>("W");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* output = ctx.Output<framework::LoDTensor>("Out");
    auto input_dims = input->dims();
    auto w_dims = w->dims();
    auto slot_pairs_num = input_dims[0];
    auto ins_num = input_dims[1];
    auto in_dim = input_dims[2];
    auto out_dim = w_dims[2];

    // get data ptr
    const T* in_data = input->data<T>();
    const T* w_data = w->data<T>();
    const T* bias_data = bias->data<T>();

    output->Resize({slot_pairs_num, ins_num, out_dim});
    T* out_data = output->mutable_data<T>(ctx.GetPlace());
    // initialize
    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
    out_eigen.device(place) = out_eigen.constant(static_cast<T>(0));

    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasNoTrans;

    T alpha = 1;
    T beta = 0;
    int64_t strideA = ins_num * in_dim;
    int64_t strideB = in_dim * out_dim;

115
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
S
ShenLiang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    blas.BatchedGEMM(transA, transB, ins_num, out_dim, in_dim, alpha, in_data,
                     w_data, beta, out_data, slot_pairs_num, strideA, strideB);
    add_bias<T>(ctx.cuda_device_context().stream(), out_data, slot_pairs_num,
                ins_num, out_dim, bias_data);
  }
};

template <typename DeviceContext, typename T>
class BatchFCGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* w = ctx.Input<Tensor>("W");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto* dw = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto* db = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto input_dims = input->dims();
    auto w_dims = w->dims();
    auto slot_pairs_num = input_dims[0];
    auto ins_num = input_dims[1];
    auto in_dim = input_dims[2];
    auto out_dim = w_dims[2];

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
    // initialize
    dx->mutable_data<T>(ctx.GetPlace());
    auto dx_eigen = framework::EigenVector<T>::Flatten(*dx);
    dx_eigen.device(place) = dx_eigen.constant(static_cast<T>(0));

    dw->mutable_data<T>(ctx.GetPlace());
    auto dw_eigen = framework::EigenVector<T>::Flatten(*dw);
    dw_eigen.device(place) = dw_eigen.constant(static_cast<T>(0));

    // get data ptr
    const T* x_data = input->data<T>();
    const T* w_data = w->data<T>();
    const T* dout_data = dout->data<T>();
    T* dx_data = dx->data<T>();
    T* dw_data = dw->data<T>();

    db->mutable_data<T>(ctx.GetPlace());
    auto db_eigen = framework::EigenVector<T>::Flatten(*db);
    db_eigen.device(place) = db_eigen.constant(static_cast<T>(0));
    T* db_data = db->data<T>();
    add_bias_grad<T>(ctx.cuda_device_context().stream(), dout_data,
                     slot_pairs_num, ins_num, out_dim, db_data);

168
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
S
ShenLiang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    T alpha = 1;
    T beta = 0;

    // dx = dout_data * y^T
    blas.BatchedGEMM(CblasNoTrans, CblasTrans, ins_num, in_dim, out_dim, alpha,
                     dout_data, w_data, beta, dx_data, slot_pairs_num,
                     ins_num * out_dim, out_dim * in_dim);
    // dy = x^T * dout_data
    blas.BatchedGEMM(CblasTrans, CblasNoTrans, in_dim, out_dim, ins_num, alpha,
                     x_data, dout_data, beta, dw_data, slot_pairs_num,
                     in_dim * ins_num, ins_num * out_dim);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using GPUCtx = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(batch_fc, ops::BatchFCCUDAKernel<GPUCtx, float>,
                        ops::BatchFCCUDAKernel<GPUCtx, double>);

REGISTER_OP_CUDA_KERNEL(batch_fc_grad,
                        ops::BatchFCGradOpCUDAKernel<GPUCtx, float>,
                        ops::BatchFCGradOpCUDAKernel<GPUCtx, double>);