detection_map_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
wanghaox 已提交
15
#include "paddle/fluid/operators/detection_map_op.h"
16
#include <string>
W
wanghaox 已提交
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class DetectionMAPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaox 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("DetectRes"),
                   "Input(DetectRes) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
30 31
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumPosCount"),
        "Output(AccumPosCount) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumTruePos"),
        "Output(AccumTruePos) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumFalsePos"),
        "Output(AccumFalsePos) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
41 42 43
    PADDLE_ENFORCE(ctx->HasOutput("MAP"),
                   "Output(MAP) of DetectionMAPOp should not be null.");

W
wanghaox 已提交
44
    auto det_dims = ctx->GetInputDim("DetectRes");
W
wanghaox 已提交
45
    PADDLE_ENFORCE_EQ(det_dims.size(), 2UL,
W
wanghaox 已提交
46
                      "The rank of Input(DetectRes) must be 2, "
W
wanghaox 已提交
47 48
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(det_dims[1], 6UL,
W
wanghaox 已提交
49
                      "The shape is of Input(DetectRes) [N, 6].");
W
wanghaox 已提交
50
    auto label_dims = ctx->GetInputDim("Label");
51
    PADDLE_ENFORCE_EQ(label_dims.size(), 2,
W
wanghaox 已提交
52 53
                      "The rank of Input(Label) must be 2, "
                      "the shape is [N, 6].");
54 55
    PADDLE_ENFORCE(label_dims[1] == 6 || label_dims[1] == 5,
                   "The shape of Input(Label) is [N, 6] or [N, 5].");
W
wanghaox 已提交
56

W
wanghaox 已提交
57 58 59 60 61 62 63 64 65 66 67
    if (ctx->HasInput("PosCount")) {
      PADDLE_ENFORCE(ctx->HasInput("TruePos"),
                     "Input(TruePos) of DetectionMAPOp should not be null when "
                     "Input(TruePos) is not null.");
      PADDLE_ENFORCE(
          ctx->HasInput("FalsePos"),
          "Input(FalsePos) of DetectionMAPOp should not be null when "
          "Input(FalsePos) is not null.");
    }

    ctx->SetOutputDim("MAP", framework::make_ddim({1}));
W
wanghaox 已提交
68 69 70
  }

 protected:
W
wanghaox 已提交
71
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
72 73
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
M
minqiyang 已提交
74
        ctx.Input<framework::Tensor>("DetectRes")->type(),
75
        platform::CPUPlace());
W
wanghaox 已提交
76 77 78 79 80
  }
};

class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
81
  void Make() override {
W
wanghaox 已提交
82 83 84 85 86 87 88 89
    AddInput("DetectRes",
             "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
             "detections. Each row has 6 values: "
             "[label, confidence, xmin, ymin, xmax, ymax], M is the total "
             "number of detect results in this mini-batch. For each instance, "
             "the offsets in first dimension are called LoD, the number of "
             "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
             "no detected data.");
W
wanghaox 已提交
90
    AddInput("Label",
91
             "(LoDTensor) A 2-D LoDTensor represents the"
W
wanghaox 已提交
92
             "Labeled ground-truth data. Each row has 6 values: "
93 94
             "[label, xmin, ymin, xmax, ymax, is_difficult] or 5 values: "
             "[label, xmin, ymin, xmax, ymax], where N is the total "
W
wanghaox 已提交
95 96 97 98
             "number of ground-truth data in this mini-batch. For each "
             "instance, the offsets in first dimension are called LoD, "
             "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
             "means there is no ground-truth data.");
99 100 101 102
    AddInput("HasState",
             "(Tensor<int>) A tensor with shape [1], 0 means ignoring input "
             "states, which including PosCount, TruePos, FalsePos.")
        .AsDispensable();
W
wanghaox 已提交
103 104
    AddInput("PosCount",
             "(Tensor) A tensor with shape [Ncls, 1], store the "
W
wanghaox 已提交
105 106 107 108 109 110 111 112
             "input positive example count of each class, Ncls is the count of "
             "input classification. "
             "This input is used to pass the AccumPosCount generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. "
             "When the input(PosCount) is empty, the cumulative "
             "calculation is not carried out, and only the results of the "
             "current mini-batch are calculated.")
W
wanghaox 已提交
113 114
        .AsDispensable();
    AddInput("TruePos",
W
wanghaox 已提交
115 116 117 118 119
             "(LoDTensor) A 2-D LoDTensor with shape [Ntp, 2], store the "
             "input true positive example of each class."
             "This input is used to pass the AccumTruePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
120 121
        .AsDispensable();
    AddInput("FalsePos",
W
wanghaox 已提交
122 123 124 125 126
             "(LoDTensor) A 2-D LoDTensor with shape [Nfp, 2], store the "
             "input false positive example of each class."
             "This input is used to pass the AccumFalsePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
127
        .AsDispensable();
W
wanghaox 已提交
128
    AddOutput("AccumPosCount",
W
wanghaox 已提交
129 130 131 132
              "(Tensor) A tensor with shape [Ncls, 1], store the "
              "positive example count of each class. It combines the input "
              "input(PosCount) and the positive example count computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
133 134
    AddOutput("AccumTruePos",
              "(LoDTensor) A LoDTensor with shape [Ntp', 2], store the "
W
wanghaox 已提交
135 136 137
              "true positive example of each class. It combines the "
              "input(TruePos) and the true positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
138 139
    AddOutput("AccumFalsePos",
              "(LoDTensor) A LoDTensor with shape [Nfp', 2], store the "
W
wanghaox 已提交
140 141 142
              "false positive example of each class. It combines the "
              "input(FalsePos) and the false positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
143 144 145
    AddOutput("MAP",
              "(Tensor) A tensor with shape [1], store the mAP evaluate "
              "result of the detection.");
146 147 148 149 150 151 152 153 154
    AddAttr<int>("class_num",
                 "(int) "
                 "The class number.");
    AddAttr<int>(
        "background_label",
        "(int, defalut: 0) "
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
        .SetDefault(0);
W
wanghaox 已提交
155 156 157 158 159
    AddAttr<float>(
        "overlap_threshold",
        "(float) "
        "The lower bound jaccard overlap threshold of detection output and "
        "ground-truth data.")
160
        .SetDefault(.5f);
W
wanghaox 已提交
161
    AddAttr<bool>("evaluate_difficult",
W
wanghaox 已提交
162
                  "(bool, default true) "
W
wanghaox 已提交
163 164 165
                  "Switch to control whether the difficult data is evaluated.")
        .SetDefault(true);
    AddAttr<std::string>("ap_type",
W
wanghaox 已提交
166 167 168
                         "(string, default 'integral') "
                         "The AP algorithm type, 'integral' or '11point'.")
        .SetDefault("integral")
W
wanghaox 已提交
169 170 171 172 173
        .InEnum({"integral", "11point"})
        .AddCustomChecker([](const std::string& ap_type) {
          PADDLE_ENFORCE_NE(GetAPType(ap_type), APType::kNone,
                            "The ap_type should be 'integral' or '11point.");
        });
W
wanghaox 已提交
174
    AddComment(R"DOC(
W
wanghaox 已提交
175 176
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
X
Xin Pan 已提交
177 178 179 180 181 182
false positive according to the input of detection and labels, then
calculate the mAP evaluate value.
Supporting '11 point' and 'integral' mAP algorithm. Please get more information
from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
W
wanghaox 已提交
183 184 185 186 187 188 189 190 191

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
192 193
REGISTER_OPERATOR(detection_map, ops::DetectionMAPOp, ops::DetectionMAPOpMaker,
                  paddle::framework::EmptyGradOpMaker);
W
wanghaox 已提交
194
REGISTER_OP_CPU_KERNEL(
W
wanghaox 已提交
195 196
    detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>,
    ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>);