提交 67cbb3e3 编写于 作者: W wanghaox

detection map evaluator for SSD

上级 e72b865c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detection_map_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class DetectionMAPOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
auto map_dim = framework::make_ddim({1});
ctx->SetOutputDim("MAP", map_dim);
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("Label")->type()),
ctx.device_context());
}
};
class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DetectionMAPOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Detect", "The detection output.");
AddInput("Label", "The label data.");
AddOutput("MAP", "The MAP evaluate result of the detection.");
AddAttr<float>("overlap_threshold", "The overlap threshold.")
.SetDefault(.3f);
AddAttr<bool>("evaluate_difficult",
"Switch to control whether the difficult data is evaluated.")
.SetDefault(true);
AddAttr<std::string>("ap_type",
"The AP algorithm type, 'Integral' or '11point'.")
.SetDefault("Integral");
AddComment(R"DOC(
Detection MAP Operator.
Detection MAP evaluator for SSD(Single Shot MultiBox Detector) algorithm.
Please get more information from the following papers:
https://arxiv.org/abs/1512.02325.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp,
ops::DetectionMAPOpMaker);
REGISTER_OP_CPU_KERNEL(
detection_map, ops::DetectionMAPOpKernel<paddle::platform::GPUPlace, float>,
ops::DetectionMAPOpKernel<paddle::platform::GPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detection_map_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
detection_map, ops::DetectionMAPOpKernel<paddle::platform::GPUPlace, float>,
ops::DetectionMAPOpKernel<paddle::platform::GPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
std::vector<int>* accu_vec) {
std::stable_sort(in_pairs.begin(), in_pairs.end(),
math::SortScorePairDescend<int>);
accu_vec->clear();
size_t sum = 0;
for (size_t i = 0; i < in_pairs.size(); ++i) {
// auto score = in_pairs[i].first;
auto count = in_pairs[i].second;
sum += count;
accu_vec->push_back(sum);
}
}
template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input_label = ctx.Input<framework::LoDTensor>("Label");
auto* input_detect = ctx.Input<framework::Tensor>("Detect");
auto* map_out = ctx.Output<framework::Tensor>("MAP");
float overlap_threshold = ctx.Attr<float>("overlap_threshold");
float evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
std::string ap_type = ctx.Attr<std::string>("ap_type");
auto label_lod = input_label->lod();
PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
"Only support one level sequence now.");
auto batch_size = label_lod[0].size() - 1;
std::vector<std::map<int, std::vector<operators::math::BBox<T>>>> gt_bboxes;
std::vector<
std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>>>
detect_bboxes;
if (platform::is_gpu_place(ctx.GetPlace())) {
framework::LoDTensor input_label_cpu;
framework::Tensor input_detect_cpu;
input_label_cpu.set_lod(input_label->lod());
input_label_cpu.Resize(input_label->dims());
input_detect_cpu.Resize(input_detect->dims());
input_label_cpu.mutable_data<T>(platform::CPUPlace());
input_detect_cpu.mutable_data<T>(platform::CPUPlace());
framework::CopyFrom(*input_label, platform::CPUPlace(),
ctx.device_context(), &input_label_cpu);
framework::CopyFrom(*input_detect, platform::CPUPlace(),
ctx.device_context(), &input_detect_cpu);
GetBBoxes(input_label_cpu, input_detect_cpu, gt_bboxes, detect_bboxes);
} else {
GetBBoxes(*input_label, *input_detect, gt_bboxes, detect_bboxes);
}
std::map<int, int> label_pos_count;
std::map<int, std::vector<std::pair<T, int>>> true_pos;
std::map<int, std::vector<std::pair<T, int>>> false_pos;
CalcTrueAndFalsePositive(batch_size, evaluate_difficult, overlap_threshold,
gt_bboxes, detect_bboxes, label_pos_count,
true_pos, false_pos);
T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos);
T* map_data = nullptr;
framework::Tensor map_cpu;
map_out->mutable_data<T>(ctx.GetPlace());
if (platform::is_gpu_place(ctx.GetPlace())) {
map_data = map_cpu.mutable_data<T>(map_out->dims(), platform::CPUPlace());
map_data[0] = map;
framework::CopyFrom(map_cpu, platform::CPUPlace(), ctx.device_context(),
map_out);
} else {
map_data = map_out->mutable_data<T>(ctx.GetPlace());
map_data[0] = map;
}
}
protected:
void GetBBoxes(
const framework::LoDTensor& input_label,
const framework::Tensor& input_detect,
std::vector<std::map<int, std::vector<operators::math::BBox<T>>>>&
gt_bboxes,
std::vector<
std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>>>&
detect_bboxes) const {
const T* label_data = input_label.data<T>();
const T* detect_data = input_detect.data<T>();
auto label_lod = input_label.lod();
auto batch_size = label_lod[0].size() - 1;
auto label_index = label_lod[0];
for (size_t n = 0; n < batch_size; ++n) {
std::map<int, std::vector<operators::math::BBox<T>>> bboxes;
for (int i = label_index[n]; i < label_index[n + 1]; ++i) {
std::vector<operators::math::BBox<T>> bbox;
math::GetBBoxFromLabelData<T>(label_data + i * 6, 1, bbox);
int label = static_cast<int>(label_data[i * 6]);
bboxes[label].push_back(bbox[0]);
}
gt_bboxes.push_back(bboxes);
}
size_t n = 0;
size_t detect_box_count = input_detect.dims()[0];
for (size_t img_id = 0; img_id < batch_size; ++img_id) {
std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>> bboxes;
size_t cur_img_id = static_cast<size_t>((detect_data + n * 7)[0]);
while (cur_img_id == img_id && n < detect_box_count) {
std::vector<T> label;
std::vector<T> score;
std::vector<operators::math::BBox<T>> bbox;
math::GetBBoxFromDetectData<T>(detect_data + n * 7, 1, label, score,
bbox);
bboxes[label[0]].push_back(std::make_pair(score[0], bbox[0]));
++n;
cur_img_id = static_cast<size_t>((detect_data + n * 7)[0]);
}
detect_bboxes.push_back(bboxes);
}
}
void CalcTrueAndFalsePositive(
size_t batch_size, bool evaluate_difficult, float overlap_threshold,
const std::vector<std::map<int, std::vector<operators::math::BBox<T>>>>&
gt_bboxes,
const std::vector<
std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>>>&
detect_bboxes,
std::map<int, int>& label_pos_count,
std::map<int, std::vector<std::pair<T, int>>>& true_pos,
std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
for (size_t n = 0; n < batch_size; ++n) {
auto image_gt_bboxes = gt_bboxes[n];
for (auto it = image_gt_bboxes.begin(); it != image_gt_bboxes.end();
++it) {
size_t count = 0;
auto labeled_bboxes = it->second;
if (evaluate_difficult) {
count = labeled_bboxes.size();
} else {
for (size_t i = 0; i < labeled_bboxes.size(); ++i)
if (!(labeled_bboxes[i].is_difficult)) ++count;
}
if (count == 0) {
continue;
}
int label = it->first;
if (label_pos_count.find(label) == label_pos_count.end()) {
label_pos_count[label] = count;
} else {
label_pos_count[label] += count;
}
}
}
for (size_t n = 0; n < detect_bboxes.size(); ++n) {
auto image_gt_bboxes = gt_bboxes[n];
auto detections = detect_bboxes[n];
if (image_gt_bboxes.size() == 0) {
for (auto it = detections.begin(); it != detections.end(); ++it) {
auto pred_bboxes = it->second;
int label = it->first;
for (size_t i = 0; i < pred_bboxes.size(); ++i) {
auto score = pred_bboxes[i].first;
true_pos[label].push_back(std::make_pair(score, 0));
false_pos[label].push_back(std::make_pair(score, 1));
}
}
continue;
}
for (auto it = detections.begin(); it != detections.end(); ++it) {
int label = it->first;
auto pred_bboxes = it->second;
if (image_gt_bboxes.find(label) == image_gt_bboxes.end()) {
for (size_t i = 0; i < pred_bboxes.size(); ++i) {
auto score = pred_bboxes[i].first;
true_pos[label].push_back(std::make_pair(score, 0));
false_pos[label].push_back(std::make_pair(score, 1));
}
continue;
}
auto matched_bboxes = image_gt_bboxes.find(label)->second;
std::vector<bool> visited(matched_bboxes.size(), false);
// Sort detections in descend order based on scores
std::sort(pred_bboxes.begin(), pred_bboxes.end(),
math::SortScorePairDescend<operators::math::BBox<T>>);
for (size_t i = 0; i < pred_bboxes.size(); ++i) {
float max_overlap = -1.0;
size_t max_idx = 0;
auto score = pred_bboxes[i].first;
for (size_t j = 0; j < matched_bboxes.size(); ++j) {
float overlap =
JaccardOverlap(pred_bboxes[i].second, matched_bboxes[j]);
if (overlap > max_overlap) {
max_overlap = overlap;
max_idx = j;
}
}
if (max_overlap > overlap_threshold) {
bool match_evaluate_difficult =
evaluate_difficult ||
(!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
if (match_evaluate_difficult) {
if (!visited[max_idx]) {
true_pos[label].push_back(std::make_pair(score, 1));
false_pos[label].push_back(std::make_pair(score, 0));
visited[max_idx] = true;
} else {
true_pos[label].push_back(std::make_pair(score, 0));
false_pos[label].push_back(std::make_pair(score, 1));
}
}
} else {
true_pos[label].push_back(std::make_pair(score, 0));
false_pos[label].push_back(std::make_pair(score, 1));
}
}
}
}
}
T CalcMAP(
std::string ap_type, const std::map<int, int>& label_pos_count,
const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
const std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
T mAP = 0.0;
int count = 0;
for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
int label = it->first;
int label_num_pos = it->second;
if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
continue;
auto label_true_pos = true_pos.find(label)->second;
auto label_false_pos = false_pos.find(label)->second;
// Compute average precision.
std::vector<int> tp_sum;
GetAccumulation<T>(label_true_pos, &tp_sum);
std::vector<int> fp_sum;
GetAccumulation<T>(label_false_pos, &fp_sum);
std::vector<float> precision, recall;
size_t num = tp_sum.size();
// Compute Precision.
for (size_t i = 0; i < num; ++i) {
// CHECK_LE(tpCumSum[i], labelNumPos);
precision.push_back(static_cast<float>(tp_sum[i]) /
static_cast<float>(tp_sum[i] + fp_sum[i]));
recall.push_back(static_cast<float>(tp_sum[i]) / label_num_pos);
}
// VOC2007 style
if (ap_type == "11point") {
std::vector<float> max_precisions(11, 0.0);
int start_idx = num - 1;
for (int j = 10; j >= 0; --j)
for (int i = start_idx; i >= 0; --i) {
if (recall[i] < j / 10.) {
start_idx = i;
if (j > 0) max_precisions[j - 1] = max_precisions[j];
break;
} else {
if (max_precisions[j] < precision[i])
max_precisions[j] = precision[i];
}
}
for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
++count;
} else if (ap_type == "Integral") {
// Nature integral
float average_precisions = 0.;
float prev_recall = 0.;
for (size_t i = 0; i < num; ++i) {
if (fabs(recall[i] - prev_recall) > 1e-6)
average_precisions += precision[i] * fabs(recall[i] - prev_recall);
prev_recall = recall[i];
}
mAP += average_precisions;
++count;
} else {
LOG(FATAL) << "Unkown ap version: " << ap_type;
}
}
if (count != 0) mAP /= count;
return mAP * 100;
}
}; // namespace operators
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle {
namespace operators {
namespace math {} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"
namespace paddle {
namespace operators {
namespace math {
template <typename T>
struct BBox {
BBox(T x_min, T y_min, T x_max, T y_max)
: x_min(x_min),
y_min(y_min),
x_max(x_max),
y_max(y_max),
is_difficult(false) {}
BBox() {}
T get_width() const { return x_max - x_min; }
T get_height() const { return y_max - y_min; }
T get_center_x() const { return (x_min + x_max) / 2; }
T get_center_y() const { return (y_min + y_max) / 2; }
T get_area() const { return get_width() * get_height(); }
// coordinate of bounding box
T x_min;
T y_min;
T x_max;
T y_max;
// whether difficult object (e.g. object with heavy occlusion is difficult)
bool is_difficult;
};
template <typename T>
void GetBBoxFromDetectData(const T* detect_data, const size_t num_bboxes,
std::vector<T>& labels, std::vector<T>& scores,
std::vector<BBox<T>>& bboxes) {
size_t out_offset = bboxes.size();
labels.resize(out_offset + num_bboxes);
scores.resize(out_offset + num_bboxes);
bboxes.resize(out_offset + num_bboxes);
for (size_t i = 0; i < num_bboxes; ++i) {
labels[out_offset + i] = *(detect_data + i * 7 + 1);
scores[out_offset + i] = *(detect_data + i * 7 + 2);
BBox<T> bbox;
bbox.x_min = *(detect_data + i * 7 + 3);
bbox.y_min = *(detect_data + i * 7 + 4);
bbox.x_max = *(detect_data + i * 7 + 5);
bbox.y_max = *(detect_data + i * 7 + 6);
bboxes[out_offset + i] = bbox;
};
}
template <typename T>
void GetBBoxFromLabelData(const T* label_data, const size_t num_bboxes,
std::vector<BBox<T>>& bboxes) {
size_t out_offset = bboxes.size();
bboxes.resize(bboxes.size() + num_bboxes);
for (size_t i = 0; i < num_bboxes; ++i) {
BBox<T> bbox;
bbox.x_min = *(label_data + i * 6 + 1);
bbox.y_min = *(label_data + i * 6 + 2);
bbox.x_max = *(label_data + i * 6 + 3);
bbox.y_max = *(label_data + i * 6 + 4);
T is_difficult = *(label_data + i * 6 + 5);
if (std::abs(is_difficult - 0.0) < 1e-6)
bbox.is_difficult = false;
else
bbox.is_difficult = true;
bboxes[out_offset + i] = bbox;
}
}
template <typename T>
inline float JaccardOverlap(const BBox<T>& bbox1, const BBox<T>& bbox2) {
if (bbox2.x_min > bbox1.x_max || bbox2.x_max < bbox1.x_min ||
bbox2.y_min > bbox1.y_max || bbox2.y_max < bbox1.y_min) {
return 0.0;
} else {
float inter_x_min = std::max(bbox1.x_min, bbox2.x_min);
float inter_y_min = std::max(bbox1.y_min, bbox2.y_min);
float inter_x_max = std::min(bbox1.x_max, bbox2.x_max);
float inter_y_max = std::min(bbox1.y_max, bbox2.y_max);
float inter_width = inter_x_max - inter_x_min;
float inter_height = inter_y_max - inter_y_min;
float inter_area = inter_width * inter_height;
float bbox_area1 = bbox1.get_area();
float bbox_area2 = bbox2.get_area();
return inter_area / (bbox_area1 + bbox_area2 - inter_area);
}
}
template <typename T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
// template <>
// bool SortScorePairDescend(const std::pair<float, NormalizedBBox>& pair1,
// const std::pair<float, NormalizedBBox>& pair2) {
// return pair1.first > pair2.first;
// }
} // namespace math
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
import sys
import collections
import math
from op_test import OpTest
class TestDetectionMAPOp(OpTest):
def set_data(self):
self.init_test_case()
self.mAP = [self.calc_map(self.tf_pos)]
self.label = np.array(self.label).astype('float32')
self.detect = np.array(self.detect).astype('float32')
self.mAP = np.array(self.mAP).astype('float32')
self.inputs = {
'Label': (self.label, self.label_lod),
'Detect': self.detect
}
self.attrs = {
'overlap_threshold': self.overlap_threshold,
'evaluate_difficult': self.evaluate_difficult,
'ap_type': self.ap_type
}
self.outputs = {'MAP': self.mAP}
def init_test_case(self):
self.overlap_threshold = 0.3
self.evaluate_difficult = True
self.ap_type = "Integral"
self.label_lod = [[0, 2, 4]]
# label xmin ymin xmax ymax difficult
self.label = [[1, 0.1, 0.1, 0.3, 0.3, 0], [1, 0.6, 0.6, 0.8, 0.8, 1],
[2, 0.3, 0.3, 0.6, 0.5, 0], [1, 0.7, 0.1, 0.9, 0.3, 0]]
# image_id label score xmin ymin xmax ymax difficult
self.detect = [
[0, 1, 0.3, 0.1, 0.0, 0.4, 0.3], [0, 1, 0.7, 0.0, 0.1, 0.2, 0.3],
[0, 1, 0.9, 0.7, 0.6, 0.8, 0.8], [1, 2, 0.8, 0.2, 0.1, 0.4, 0.4],
[1, 2, 0.1, 0.4, 0.3, 0.7, 0.5], [1, 1, 0.2, 0.8, 0.1, 1.0, 0.3],
[1, 3, 0.2, 0.8, 0.1, 1.0, 0.3]
]
# image_id label score false_pos false_pos
# [-1, 1, 3, -1, -1],
# [-1, 2, 1, -1, -1]
self.tf_pos = [[0, 1, 0.9, 1, 0], [0, 1, 0.7, 1, 0], [0, 1, 0.3, 0, 1],
[1, 1, 0.2, 1, 0], [1, 2, 0.8, 0, 1], [1, 2, 0.1, 1, 0],
[1, 3, 0.2, 0, 1]]
def calc_map(self, tf_pos):
mAP = 0.0
count = 0
class_pos_count = {}
true_pos = {}
false_pos = {}
def get_accumulation(pos_list):
sorted_list = sorted(pos_list, key=lambda pos: pos[0], reverse=True)
sum = 0
accu_list = []
for (score, count) in sorted_list:
sum += count
accu_list.append(sum)
return accu_list
label_count = collections.Counter()
for (label, xmin, ymin, xmax, ymax, difficult) in self.label:
if self.evaluate_difficult:
label_count[label] += 1
elif not difficult:
label_count[label] += 1
true_pos = collections.defaultdict(list)
false_pos = collections.defaultdict(list)
for (image_id, label, score, tp, fp) in tf_pos:
true_pos[label].append([score, tp])
false_pos[label].append([score, fp])
for (label, label_pos_num) in label_count.items():
if label_pos_num == 0 or label not in true_pos:
continue
label_true_pos = true_pos[label]
label_false_pos = false_pos[label]
accu_tp_sum = get_accumulation(label_true_pos)
accu_fp_sum = get_accumulation(label_false_pos)
precision = []
recall = []
for i in range(len(accu_tp_sum)):
precision.append(
float(accu_tp_sum[i]) /
float(accu_tp_sum[i] + accu_fp_sum[i]))
recall.append(float(accu_tp_sum[i]) / label_pos_num)
if self.ap_type == "11point":
max_precisions = [11.0, 0.0]
start_idx = len(accu_tp_sum) - 1
for j in range(10, 0, -1):
for i in range(start_idx, 0, -1):
if recall[i] < j / 10.0:
start_idx = i
if j > 0:
max_precisions[j - 1] = max_precisions[j]
break
else:
if max_precisions[j] < accu_precision[i]:
max_precisions[j] = accu_precision[i]
for j in range(10, 0, -1):
mAP += max_precisions[j] / 11
count += 1
elif self.ap_type == "Integral":
average_precisions = 0.0
prev_recall = 0.0
for i in range(len(accu_tp_sum)):
if math.fabs(recall[i] - prev_recall) > 1e-6:
average_precisions += precision[i] * \
math.fabs(recall[i] - prev_recall)
prev_recall = recall[i]
mAP += average_precisions
count += 1
if count != 0: mAP /= count
return mAP * 100.0
def setUp(self):
self.op_type = "detection_map"
self.set_data()
def test_check_output(self):
self.check_output()
class TestDetectionMAPOpSkipDiff(TestDetectionMAPOp):
def init_test_case(self):
super(TestDetectionMAPOpSkipDiff, self).init_test_case()
self.evaluate_difficult = False
self.tf_pos = [[0, 1, 0.7, 1, 0], [0, 1, 0.3, 0, 1], [1, 1, 0.2, 1, 0],
[1, 2, 0.8, 0, 1], [1, 2, 0.1, 1, 0], [1, 3, 0.2, 0, 1]]
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册