dense_tensor.h 11.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/core/allocator.h"
18
#include "paddle/phi/core/storage_properties.h"
19 20 21
#include "paddle/phi/core/stream.h"
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
22

23
/* @jim19930609: Move to MKLDNN_Tensor in the future
24
 */
25
#ifdef PADDLE_WITH_MKLDNN
L
Leo Chen 已提交
26
#include "dnnl.hpp"  // NOLINT
27 28
#endif

29
namespace phi {
30

31
class DenseTensorUtils;
L
LiYuRio 已提交
32 33 34 35 36
namespace distributed {
namespace auto_parallel {
class DistTensor;
}  // namespace auto_parallel
}  // namespace distributed
37

38
/// \brief The Dense tensor stores values in a contiguous sequential block
39 40 41 42 43 44 45 46 47 48
/// of memory where all values are represented. Tensors or multi-dimensional
/// arrays are used in math operators.
/// During the entire life cycle of a DenseTensor, its device type and key
/// metadata are set unchanged.
class DenseTensor : public TensorBase,
                    public TypeInfoTraits<TensorBase, DenseTensor> {
 public:
  /// \brief Construct a dense tensor and allocate space.
  /// \param a The allocator used to allocate space.
  /// \param meta The meta data of dense tensor.
49
  DenseTensor(Allocator* a, const DenseTensorMeta& meta);
50 51 52 53

  /// \brief Construct a dense tensor and allocate space.
  /// \param a The allocator used to allocate space.
  /// \param meta The meta data of dense tensor.
54
  DenseTensor(Allocator* a, DenseTensorMeta&& meta);
55

56
  DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
57
              const DenseTensorMeta& meta);
58 59 60 61

  /// \brief Because dense tensor is a kind of container, we give a default
  /// constructor to use for stl container. But the dense tensor created with
  /// the default constructor is not practical.
62
  // DenseTensor() = default;
63 64 65 66 67

  /// \brief Because dense tensor is a resource handle, we provide a default
  /// move constructor to support move semantics.
  DenseTensor(DenseTensor&& other) = default;

68 69
  /// \brief DenseTensor shallow copy constructor.
  DenseTensor(const DenseTensor& other);
70

71 72 73
  /// \brief DenseTensor shallow copy assignment.
  DenseTensor& operator=(const DenseTensor& other);

74 75
  DenseTensor& operator=(DenseTensor&& other);

76 77
  DenseTensor();

78 79 80 81 82 83 84 85 86 87
  /// \brief Destroy the tensor object and release exclusive resources.
  virtual ~DenseTensor() = default;

 public:
  /// \brief Returns the name of the class for type traits.
  /// \return The name of the class.
  static const char* name() { return "DenseTensor"; }

  /// \brief Returns the number of elements contained in tensor.
  /// \return The number of elements contained in tensor.
88
  int64_t numel() const override;
89 90 91

  /// \brief Returns the dims of the tensor.
  /// \return The dims of the tensor.
92
  const DDim& dims() const noexcept override { return meta_.dims; }
93 94 95

  /// \brief Returns the lod of the tensor.
  /// \return The lod of the tensor.
96
  const LoD& lod() const noexcept { return meta_.lod; }
97 98 99

  /// \brief Returns the data type of the tensor.
  /// \return The data type of the tensor.
100
  DataType dtype() const noexcept override { return meta_.dtype; }
101 102 103

  /// \brief Returns the data layout of the tensor.
  /// \return The data layout of the tensor.
104
  DataLayout layout() const noexcept override { return meta_.layout; }
105 106 107

  /// \brief Returns the data place of the tensor.
  /// \return The data place of the tensor.
108
  const Place& place() const override;
109 110 111 112 113

  /// \brief Returns the meta information of the tensor.
  /// \return The meta information of the tensor.
  const DenseTensorMeta& meta() const noexcept { return meta_; }

114 115 116 117 118
  /// \brief Sets the meta information of the tensor. Only when the original
  /// attribute of Tensor is incomplete, can it be reset.
  /// \param meta The meta information of the tensor.
  void set_meta(DenseTensorMeta&& meta);

119 120
  void set_meta(const DenseTensorMeta& meta);

121 122
  /// \brief Test whether the metadata is valid.
  /// \return Whether the metadata is valid.
123
  bool valid() const noexcept override { return meta_.valid(); }
124

125 126
  /// \brief Test whether the allocation is allocated.
  /// return Whether the allocation is allocated.
127
  bool initialized() const override { return holder_ && holder_->ptr(); }
128

129 130 131 132
  /// \brief Allocate memory with requested size from allocator.
  /// \return The mutable data pointer value of type T.
  void* AllocateFrom(Allocator* allocator,
                     DataType dtype,
133 134
                     size_t requested_size = 0,
                     bool fake_alloc = false) override;
135

136 137
  /// \brief Check if allocation is shared with other objects.
  /// \return Whether the allocation is shared with other objects.
138 139
  bool IsSharedWith(const DenseTensor& b) const;

140
  /// \brief Change the shape information in the metadata. If the new size is
141
  /// larger than the original value, the allocation area will be reallocated.
142
  /// \param dims The new dims of the dense tensor.
143
  /// \param lod The new lod of the dense tensor.
144
  // void Resize(const DDim& dims);
145 146 147
  void ResizeAndAllocate(const DDim& dims);

  DenseTensor& Resize(const DDim& dims);
148 149 150 151

  /// \brief Change the lod information in the metadata.
  /// \param lod The new lod of the dense tensor.
  void ResetLoD(const LoD& lod);
152

153 154
  /// \brief Returns the actual allocation size occupied by tensor, may be
  /// larger
155
  /// than its shape dims.
156
  /// \return The actual allocation size occupied by tensor.
157
  size_t capacity() const { return holder_->size(); }
158 159 160 161 162 163 164 165 166 167

  /// \brief Get the const data pointer value of type T.
  /// \return The const data pointer value of type T.
  template <typename T>
  const T* data() const;

  /// \brief Get the const data pointer value of raw type.
  /// \return The const data pointer value of raw type.
  const void* data() const;

168 169 170 171 172
  template <typename T>
  T* data();

  void* data();

173 174 175 176
  /// \brief Get whether the storage_properties is inited.
  /// \return The init status of storage_properties.
  bool storage_properties_initialized() const;

177 178 179 180 181 182 183 184 185 186
  /// \brief Returns the storage_properties of the tensor.
  /// \return The storage_properties of the tensor.
  template <typename DeviceT>
  const DeviceT& storage_properties() const;

  /// \brief Sets the storage_properties of the tensor.
  /// \param storage_properties The storage_properties of the tensor.
  void set_storage_properties(
      std::unique_ptr<StorageProperties>&& storage_properties);

187
 private:
188
  friend class DenseTensorUtils;
L
LiYuRio 已提交
189
  friend class phi::distributed::auto_parallel::DistTensor;
190

191
 protected:
192
  DenseTensorMeta meta_;
193
  std::shared_ptr<phi::Allocation> holder_;
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  /** [ Why need StorageProperties? ]
   *
   * 1. Some hardware or third-party libraries add some additional storage
   * properties on top of the description of the basic DenseTensor, such as
   * memory desc of MKLDNN, storage_format and storage_layout of NPU,
   * these members are necessary for optimal performance, but if the properties
   * of each device are added to the DenseTensor with different macro isolation,
   * the memory layout of the DenseTensor will become more fragmented.
   * Under different compilation conditions, the member layout of the
   * DenseTensor is very unstable, which may introduce bugs that are difficult
   * to debug.
   *
   * 2. If the layout of DenseTensor is very different from the framework
   * itself, it is recommended to directly inherit TensorBase to implement
   * SpatialTensor.
   *
   * TODO(chenweihang): merge the dnnl::memory::desc and
   * dnnl::memory::format_tag into StorageProperties, dnnl::memory::desc is a
   * type that takes up a lot of space, original tensor members' size:
   *
   * DenseTensor size: 880
   * -------- ordered members --------:
   * DenseTensorMeta size: 128
   *  - is_scalar_ size: 1
   *  - DDim size: 80
   *  - DataType size: 4
   *  - DataLayout size: 4
   *  - LoD size: 24
   *  - offset size: 8
   *  std::shared_ptr<phi::Allocation> size: 16
   *  std::shared_ptr<InplaceVersion> size: 16 // need to be moved
   *  dnnl::memory::format_tag size: 4 // need to be moved
   *  dnnl::memory::desc size: 696 // need to be moved
   */
  std::unique_ptr<StorageProperties> storage_properties_{nullptr};

231 232 233 234
 public:
  /* Temporarily put InplaceVersion inside DenseTensor.
  Will move to AutogradMeta as soon as we switch to Eager Dygraph.
  */
L
Leo Chen 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  /*
  NOTE(liym27): [ What is TensorInplaceVersion used for? ]

  TensorInplaceVersion is a version counter and every Tensor has a version
  counter. It's used to check whether an inplace operation will result in an
  incorrect gradient calculation. Version is incremented when the data of the
  Variable is modified in place.

  - Question: In what scenarios will version counters be shared?
  - Answer: When two Variables/VarBases share the same C++ Tensor(its Allocation
  may change), both of them share the same version counter. For examples:
   1. `z = paddle.assign(input=x, output=y)`, `z` shares the same version
  counter of `y` because z and y is the same VarBase;
   2. `y = x.detach()`, `y` shares the same version counter of `x`.

  - Question: In what scenarios will version counters NOT be shared?
  - Answer: Replacing a `Variable`'s data by calling
  `Tensor::ShareDataWith(...)` or `Tensor::ShareBufferWith(...)`. Because they
253
  share the same Allocation but not phi::DenseTensor.
L
Leo Chen 已提交
254

255
  - Question: Why put the inplace_version_counter_ in phi::DenseTensor instead
L
Leo Chen 已提交
256 257 258 259 260 261 262 263 264
  of Allocation or Variable?
  - Answer:
   1. Tensor can call ResetHolder() to reset the corresponding Allocation so
  that the inplace_version_counter_ changes if it's in Allocation, which will
  lead to confusing information about inplace version.
   2. If inplace_version_counter_ is in Variable, different VariableWrappers
   should be able to share the same Variable. However, a VariableWrapper hold a
   Variable object but not a pointer.
 */
265 266 267 268 269 270 271 272 273 274 275 276
  class InplaceVersion {
   public:
    bool IsUnique() const { return inplace_version_ == 0; }
    void Bump() { ++inplace_version_; }
    uint32_t CurrentVersion() const { return inplace_version_; }
    void SetInplaceVersionToZero() { inplace_version_ = 0; }

   private:
    uint32_t inplace_version_{0};
  };

 protected:
R
risemeup1 已提交
277 278
  std::shared_ptr<InplaceVersion> inplace_version_counter_ =
      std::make_shared<InplaceVersion>();
279

280 281 282 283 284 285 286 287
/* @jim19930609: This is a hack
In general, it is badly designed to fuse MKLDNN-specific objects into a
generic Tensor.
We temporarily leave them here to unblock Tensor Unification progress.
In the final state, we should come up with a MKLDNN_Tensor and move the
following codes there.
*/
#ifdef PADDLE_WITH_MKLDNN
288 289
  /// \brief memory descriptor of tensor which have layout set as kMKLDNN
  dnnl::memory::desc mem_desc_;
290 291
#endif

292
#ifndef PADDLE_WITH_CUSTOM_KERNEL
293
#include "paddle/phi/core/dense_tensor.inl"
294
#endif
295
};
296

297
}  // namespace phi