test_box_coder_op.py 9.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
gaoyuan 已提交
17 18 19 20
import unittest
import numpy as np
import sys
import math
21
from op_test import OpTest
G
gaoyuan 已提交
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
    pb_w = p_box[:, 2] - p_box[:, 0] + (norm == False)
    pb_h = p_box[:, 3] - p_box[:, 1] + (norm == False)
    pb_x = pb_w * 0.5 + p_box[:, 0]
    pb_y = pb_h * 0.5 + p_box[:, 1]
    shape = (1, p_box.shape[0]) if axis == 0 else (p_box.shape[0], 1)

    pb_w = pb_w.reshape(shape)
    pb_h = pb_h.reshape(shape)
    pb_x = pb_x.reshape(shape)
    pb_y = pb_y.reshape(shape)

    if pb_v.ndim == 2:
        pb_v = pb_v.reshape(1, pb_v.shape[0], pb_v.shape[1])
    if pb_v.ndim == 1:
        tb_x = pb_v[0] * t_box[:, :, 0] * pb_w + pb_x
        tb_y = pb_v[1] * t_box[:, :, 1] * pb_h + pb_y
        tb_w = np.exp(pb_v[2] * t_box[:, :, 2]) * pb_w
        tb_h = np.exp(pb_v[3] * t_box[:, :, 3]) * pb_h
J
jerrywgz 已提交
43
    else:
44 45 46 47 48 49 50 51 52
        tb_x = pb_v[:, :, 0] * t_box[:, :, 0] * pb_w + pb_x
        tb_y = pb_v[:, :, 1] * t_box[:, :, 1] * pb_h + pb_y
        tb_w = np.exp(pb_v[:, :, 2] * t_box[:, :, 2]) * pb_w
        tb_h = np.exp(pb_v[:, :, 3] * t_box[:, :, 3]) * pb_h
    output_box[:, :, 0] = tb_x - tb_w / 2
    output_box[:, :, 1] = tb_y - tb_h / 2
    output_box[:, :, 2] = tb_x + tb_w / 2 - (not norm)
    output_box[:, :, 3] = tb_y + tb_h / 2 - (not norm)

G
gaoyuan 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def box_encoder(t_box, p_box, pb_v, output_box, norm):
    pb_w = p_box[:, 2] - p_box[:, 0] + (norm == False)
    pb_h = p_box[:, 3] - p_box[:, 1] + (norm == False)
    pb_x = pb_w * 0.5 + p_box[:, 0]
    pb_y = pb_h * 0.5 + p_box[:, 1]
    shape = (1, p_box.shape[0])

    pb_w = pb_w.reshape(shape)
    pb_h = pb_h.reshape(shape)
    pb_x = pb_x.reshape(shape)
    pb_y = pb_y.reshape(shape)

    if pb_v.ndim == 2:
        pb_v = pb_v.reshape(1, pb_v.shape[0], pb_v.shape[1])
    tb_x = ((t_box[:, 2] + t_box[:, 0]) / 2).reshape(t_box.shape[0], 1)
    tb_y = ((t_box[:, 3] + t_box[:, 1]) / 2).reshape(t_box.shape[0], 1)
    tb_w = (t_box[:, 2] - t_box[:, 0]).reshape(t_box.shape[0], 1) + (not norm)
    tb_h = (t_box[:, 3] - t_box[:, 1]).reshape(t_box.shape[0], 1) + (not norm)
    if pb_v.ndim == 1:
        output_box[:, :, 0] = (tb_x - pb_x) / pb_w / pb_v[0]
        output_box[:, :, 1] = (tb_y - pb_y) / pb_h / pb_v[1]
        output_box[:, :, 2] = np.log(np.fabs(tb_w / pb_w)) / pb_v[2]
        output_box[:, :, 3] = np.log(np.fabs(tb_h / pb_h)) / pb_v[3]
    else:
        output_box[:, :, 0] = (tb_x - pb_x) / pb_w / pb_v[:, :, 0]
        output_box[:, :, 1] = (tb_y - pb_y) / pb_h / pb_v[:, :, 1]
        output_box[:, :, 2] = np.log(np.fabs(tb_w / pb_w)) / pb_v[:, :, 2]
        output_box[:, :, 3] = np.log(np.fabs(tb_h / pb_h)) / pb_v[:, :, 3]
G
gaoyuan 已提交
82 83


84 85 86
def batch_box_coder(p_box, pb_v, t_box, lod, code_type, norm, axis=0):
    n = t_box.shape[0]
    m = p_box.shape[0]
J
jerrywgz 已提交
87
    if code_type == "DecodeCenterSize":
88
        m = t_box.shape[1]
G
gaoyuan 已提交
89
    output_box = np.zeros((n, m, 4), dtype=np.float32)
90 91
    cur_offset = 0
    for i in range(len(lod)):
Y
Yuan Gao 已提交
92
        if (code_type == "EncodeCenterSize"):
93 94 95
            box_encoder(t_box[cur_offset:(cur_offset + lod[i]), :], p_box, pb_v,
                        output_box[cur_offset:(cur_offset + lod[i]), :, :],
                        norm)
Y
Yuan Gao 已提交
96
        elif (code_type == "DecodeCenterSize"):
97
            box_decoder(t_box, p_box, pb_v, output_box, norm, axis)
98
        cur_offset += lod[i]
G
gaoyuan 已提交
99 100 101 102 103 104 105 106 107
    return output_box


class TestBoxCoderOp(OpTest):
    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "box_coder"
108
        lod = [[1, 1, 1, 1, 1]]
109 110 111
        prior_box = np.random.random((81, 4)).astype('float32')
        prior_box_var = np.random.random((81, 4)).astype('float32')
        target_box = np.random.random((20, 81, 4)).astype('float32')
G
gaoyuan 已提交
112
        code_type = "DecodeCenterSize"
113
        box_normalized = False
J
jerrywgz 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        output_box = batch_box_coder(prior_box, prior_box_var, target_box,
                                     lod[0], code_type, box_normalized)
        self.inputs = {
            'PriorBox': prior_box,
            'PriorBoxVar': prior_box_var,
            'TargetBox': target_box,
        }
        self.attrs = {
            'code_type': 'decode_center_size',
            'box_normalized': False
        }
        self.outputs = {'OutputBox': output_box}


class TestBoxCoderOpWithOneRankVar(OpTest):
    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "box_coder"
        lod = [[1, 1, 1, 1, 1]]
135
        prior_box = np.random.random((81, 4)).astype('float32')
J
jerrywgz 已提交
136
        prior_box_var = np.random.random((4)).astype('float32')
137
        target_box = np.random.random((20, 81, 4)).astype('float32')
J
jerrywgz 已提交
138 139
        code_type = "DecodeCenterSize"
        box_normalized = False
G
gaoyuan 已提交
140
        output_box = batch_box_coder(prior_box, prior_box_var, target_box,
141
                                     lod[0], code_type, box_normalized)
G
gaoyuan 已提交
142 143 144 145 146 147

        self.inputs = {
            'PriorBox': prior_box,
            'PriorBoxVar': prior_box_var,
            'TargetBox': target_box,
        }
148 149 150
        self.attrs = {
            'code_type': 'decode_center_size',
            'box_normalized': False
151 152 153 154 155 156 157 158 159 160 161
        }
        self.outputs = {'OutputBox': output_box}


class TestBoxCoderOpWithoutBoxVar(OpTest):
    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "box_coder"
        lod = [[0, 1, 2, 3, 4, 5]]
162 163 164
        prior_box = np.random.random((81, 4)).astype('float32')
        prior_box_var = np.ones((81, 4)).astype('float32')
        target_box = np.random.random((20, 81, 4)).astype('float32')
165 166 167 168 169 170 171 172 173 174 175 176
        code_type = "DecodeCenterSize"
        box_normalized = False
        output_box = batch_box_coder(prior_box, prior_box_var, target_box,
                                     lod[0], code_type, box_normalized)

        self.inputs = {
            'PriorBox': prior_box,
            'TargetBox': target_box,
        }
        self.attrs = {
            'code_type': 'decode_center_size',
            'box_normalized': False
177
        }
G
gaoyuan 已提交
178 179 180 181 182 183 184 185 186
        self.outputs = {'OutputBox': output_box}


class TestBoxCoderOpWithLoD(OpTest):
    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "box_coder"
187 188 189 190
        lod = [[10, 20, 20]]
        prior_box = np.random.random((20, 4)).astype('float32')
        prior_box_var = np.random.random((20, 4)).astype('float32')
        target_box = np.random.random((50, 4)).astype('float32')
G
gaoyuan 已提交
191
        code_type = "EncodeCenterSize"
192
        box_normalized = True
G
gaoyuan 已提交
193
        output_box = batch_box_coder(prior_box, prior_box_var, target_box,
194
                                     lod[0], code_type, box_normalized)
G
gaoyuan 已提交
195 196 197 198 199 200

        self.inputs = {
            'PriorBox': prior_box,
            'PriorBoxVar': prior_box_var,
            'TargetBox': (target_box, lod),
        }
201
        self.attrs = {'code_type': 'encode_center_size', 'box_normalized': True}
G
gaoyuan 已提交
202 203 204
        self.outputs = {'OutputBox': output_box}


J
jerrywgz 已提交
205 206 207 208 209 210 211
class TestBoxCoderOpWithAxis(OpTest):
    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "box_coder"
        lod = [[1, 1, 1, 1, 1]]
212
        prior_box = np.random.random((30, 4)).astype('float32')
J
jerrywgz 已提交
213
        prior_box_var = np.random.random((4)).astype('float32')
214
        target_box = np.random.random((30, 81, 4)).astype('float32')
J
jerrywgz 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        code_type = "DecodeCenterSize"
        box_normalized = False
        axis = 1
        output_box = batch_box_coder(prior_box, prior_box_var, target_box,
                                     lod[0], code_type, box_normalized, axis)

        self.inputs = {
            'PriorBox': prior_box,
            'PriorBoxVar': prior_box_var,
            'TargetBox': target_box,
        }
        self.attrs = {
            'code_type': 'decode_center_size',
            'box_normalized': False,
            'axis': axis
        }
        self.outputs = {'OutputBox': output_box}


234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
class TestBoxCoderOpWithVariance(OpTest):
    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "box_coder"
        lod = [[1, 1, 1, 1, 1]]
        prior_box = np.random.random((30, 4)).astype('float32')
        prior_box_var = np.random.random((4)).astype('float32')
        target_box = np.random.random((30, 81, 4)).astype('float32')
        code_type = "DecodeCenterSize"
        box_normalized = False
        axis = 1
        output_box = batch_box_coder(prior_box, prior_box_var, target_box,
                                     lod[0], code_type, box_normalized, axis)

        self.inputs = {
            'PriorBox': prior_box,
            'TargetBox': target_box,
        }
        self.attrs = {
            'code_type': 'decode_center_size',
            'box_normalized': False,
            'variance': prior_box_var.astype(np.float).flatten(),
            'axis': axis
        }
        self.outputs = {'OutputBox': output_box}


G
gaoyuan 已提交
263 264
if __name__ == '__main__':
    unittest.main()