Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
10dd3b37
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
10dd3b37
编写于
1月 17, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add axis for box coder op
上级
3f815e07
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
282 addition
and
104 deletion
+282
-104
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+34
-6
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+55
-28
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+49
-27
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+7
-2
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+136
-40
未找到文件。
paddle/fluid/API.spec
浏览文件 @
10dd3b37
...
...
@@ -315,7 +315,7 @@ paddle.fluid.layers.roi_perspective_transform ArgSpec(args=['input', 'rois', 'tr
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True))
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', '
name'], varargs=None, keywords=None, defaults=('encode_center_size', True
, None))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', '
axis', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, 0
, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
...
...
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
10dd3b37
...
...
@@ -32,31 +32,53 @@ class BoxCoderOp : public framework::OperatorWithKernel {
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
prior_box_dims
.
size
(),
2
,
"The rank of Input of PriorBox
Var
must be 2"
);
"The rank of Input of PriorBox must be 2"
);
PADDLE_ENFORCE_EQ
(
prior_box_dims
[
1
],
4
,
"The shape of PriorBox is [N, 4]"
);
if
(
ctx
->
HasInput
(
"PriorBoxVar"
))
{
auto
prior_box_var_dims
=
ctx
->
GetInputDim
(
"PriorBoxVar"
);
PADDLE_ENFORCE_EQ
(
prior_box_dims
,
prior_box_var_dims
);
PADDLE_ENFORCE
(
prior_box_var_dims
.
size
()
==
1
||
prior_box_var_dims
.
size
()
==
2
,
"Input(PriorBoxVar) of BoxCoderOp should be 1 or 2."
);
if
(
prior_box_var_dims
.
size
()
==
1
)
{
PADDLE_ENFORCE_EQ
(
prior_box_var_dims
[
0
],
4
,
"The 1st dimension of Input(PriorBoxVar) should be 1"
"when the rank is 1."
);
}
else
{
PADDLE_ENFORCE_EQ
(
prior_box_dims
,
prior_box_var_dims
,
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox when the rank is 2.)"
);
}
}
auto
code_type
=
GetBoxCodeType
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"code_type"
));
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
.
size
(),
2
,
"The rank of Input of TargetBox must be 2"
);
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
4
,
"The shape of TargetBox is [M, 4]"
);
ctx
->
SetOutputDim
(
"OutputBox"
,
framework
::
make_ddim
({
target_box_dims
[
0
],
prior_box_dims
[
0
],
4
}));
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
.
size
(),
3
,
"The rank of Input of TargetBox must be 3"
);
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
if
(
axis
==
0
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
}
else
if
(
axis
==
1
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
0
],
prior_box_dims
[
0
]);
}
else
{
PADDLE_THROW
(
"axis must be 0 or 1."
);
}
PADDLE_ENFORCE_EQ
(
target_box_dims
[
2
],
prior_box_dims
[
1
]);
ctx
->
ShareDim
(
"TargetBox"
,
/*->*/
"OutputBox"
);
}
}
ctx
->
SetOutputDim
(
"OutputBox"
,
framework
::
make_ddim
({
target_box_dims
[
0
],
prior_box_dims
[
0
],
4
}));
ctx
->
ShareLoD
(
"TargetBox"
,
/*->*/
"OutputBox"
);
}
};
...
...
@@ -100,6 +122,12 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default true) "
"whether treat the priorbox as a noramlized box"
)
.
SetDefault
(
true
);
AddAttr
<
int
>
(
"axis"
,
"(int, default 1)"
"which axis to broadcast for box decode, it is only valid"
"when code type is decode_center_size"
)
.
SetDefault
(
0
)
.
InEnum
({
0
,
1
});
AddOutput
(
"OutputBox"
,
"(LoDTensor or Tensor) "
"When code_type is 'encode_center_size', the output tensor of "
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
10dd3b37
...
...
@@ -20,7 +20,8 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
const
bool
normalized
,
T
*
output
)
{
const
bool
normalized
,
const
T
prior_box_var_size
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
row_idx
=
idx
/
col
;
...
...
@@ -30,11 +31,9 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
prior_box_data
[
col_idx
*
len
+
1
])
/
2
;
T
prior_box_center_x
=
prior_box_data
[
col_idx
*
len
]
+
prior_box_width
/
2
;
T
prior_box_center_y
=
prior_box_data
[
col_idx
*
len
+
1
]
+
prior_box_height
/
2
;
T
target_box_center_x
=
(
target_box_data
[
row_idx
*
len
+
2
]
+
target_box_data
[
row_idx
*
len
])
/
...
...
@@ -55,10 +54,14 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
output
[
idx
*
len
+
2
]
=
log
(
fabs
(
target_box_width
/
prior_box_width
));
output
[
idx
*
len
+
3
]
=
log
(
fabs
(
target_box_height
/
prior_box_height
));
if
(
prior_box_var_data
)
{
output
[
idx
*
len
]
/=
prior_box_var_data
[
col_idx
*
len
];
output
[
idx
*
len
+
1
]
/=
prior_box_var_data
[
col_idx
*
len
+
1
];
output
[
idx
*
len
+
2
]
/=
prior_box_var_data
[
col_idx
*
len
+
2
];
output
[
idx
*
len
+
3
]
/=
prior_box_var_data
[
col_idx
*
len
+
3
];
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
col_idx
*
len
;
}
output
[
idx
*
len
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
idx
*
len
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
idx
*
len
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
output
[
idx
*
len
+
3
]
/=
prior_box_var_data
[
prior_var_offset
+
3
];
}
}
}
...
...
@@ -68,33 +71,48 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
const
bool
normalized
,
T
*
output
)
{
const
bool
normalized
,
const
T
prior_box_var_size
,
const
int
axis
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
prior_box_offset
=
0
;
if
(
idx
<
row
*
col
)
{
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
]
+
const
int
row_idx
=
idx
/
col
;
if
(
axis
==
0
)
prior_box_offset
=
col_idx
*
len
;
else
if
(
axis
==
1
)
prior_box_offset
=
row_idx
*
len
;
T
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
prior_box_data
[
prior_box_offset
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
prior_box_offset
+
3
]
-
prior_box_data
[
prior_box_offset
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
prior_box_data
[
col_idx
*
len
+
1
])
/
2
;
prior_box_data
[
prior_box_offset
]
+
prior_box_width
/
2
;
T
prior_box_center_y
=
prior_box_data
[
prior_box_offset
+
1
]
+
prior_box_height
/
2
;
T
target_box_width
,
target_box_height
;
T
target_box_center_x
,
target_box_center_y
;
if
(
prior_box_var_data
)
{
target_box_width
=
exp
(
prior_box_var_data
[
col_idx
*
len
+
2
]
*
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
if
(
axis
==
0
)
prior_var_offset
=
col_idx
*
len
;
else
if
(
axis
==
1
)
prior_var_offset
=
row_idx
*
len
;
}
target_box_width
=
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
prior_box_var_data
[
col_idx
*
len
+
3
]
*
target_box_height
=
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
prior_box_var_data
[
col_idx
*
len
]
*
target_box_center_x
=
prior_box_var_data
[
prior_var_offset
]
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
prior_box_var_data
[
col_idx
*
len
+
1
]
*
target_box_center_y
=
prior_box_var_data
[
prior_var_offset
+
1
]
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
...
...
@@ -131,14 +149,25 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
const
T
*
prior_box_data
=
prior_box
->
data
<
T
>
();
const
T
*
target_box_data
=
target_box
->
data
<
T
>
();
const
T
*
prior_box_var_data
=
nullptr
;
if
(
prior_box_var
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
auto
prior_box_var_size
=
0
;
if
(
prior_box_var
)
{
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
prior_box_var_size
=
prior_box_var
->
dims
().
size
();
}
if
(
target_box
->
lod
().
size
())
{
PADDLE_ENFORCE_EQ
(
target_box
->
lod
().
size
(),
1
,
"Only support 1 level of LoD."
);
}
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
auto
row
=
target_box
->
dims
()[
0
];
auto
col
=
prior_box
->
dims
()[
0
];
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
col
=
target_box
->
dims
()[
1
];
}
auto
len
=
prior_box
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
row
*
col
+
block
-
1
)
/
block
;
...
...
@@ -147,16 +176,14 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
T
*
output
=
output_box
->
data
<
T
>
();
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
normalized
,
output
);
normalized
,
prior_box_var_size
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
normalized
,
output
);
normalized
,
prior_box_var_size
,
axis
,
output
);
}
}
};
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
10dd3b37
...
...
@@ -53,10 +53,9 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_x
=
prior_box_data
[
j
*
len
]
+
prior_box_width
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
j
*
len
+
3
]
+
prior_box_data
[
j
*
len
+
1
])
/
2
;
prior_box_data
[
j
*
len
+
1
]
+
prior_box_height
/
2
;
T
target_box_center_x
=
(
target_box_data
[
i
*
len
+
2
]
+
target_box_data
[
i
*
len
])
/
2
;
...
...
@@ -78,10 +77,14 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output
[
offset
+
3
]
=
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
));
if
(
prior_box_var
)
{
output
[
offset
]
/=
prior_box_var_data
[
j
*
len
];
output
[
offset
+
1
]
/=
prior_box_var_data
[
j
*
len
+
1
];
output
[
offset
+
2
]
/=
prior_box_var_data
[
j
*
len
+
2
];
output
[
offset
+
3
]
/=
prior_box_var_data
[
j
*
len
+
3
];
int
prior_var_offset
=
0
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
prior_var_offset
=
j
*
len
;
}
output
[
offset
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
offset
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
offset
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
output
[
offset
+
3
]
/=
prior_box_var_data
[
prior_var_offset
+
3
];
}
}
}
...
...
@@ -89,48 +92,63 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void
DecodeCenterSize
(
const
framework
::
Tensor
*
target_box
,
const
framework
::
Tensor
*
prior_box
,
const
framework
::
Tensor
*
prior_box_var
,
const
bool
normalized
,
T
*
output
)
const
{
const
bool
normalized
,
const
int
axis
,
T
*
output
)
const
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
prior_box
->
dims
()[
0
];
int64_t
len
=
prior_box
->
dims
()[
1
];
int64_t
col
=
target_box
->
dims
()[
1
];
int64_t
len
=
target_box
->
dims
()[
2
];
auto
*
target_box_data
=
target_box
->
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
->
data
<
T
>
();
const
T
*
prior_box_var_data
=
nullptr
;
if
(
prior_box_var
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
int
prior_box_offset
=
0
;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
if
(
axis
==
0
)
{
prior_box_offset
=
j
*
len
;
}
else
if
(
axis
==
1
)
{
prior_box_offset
=
i
*
len
;
}
T
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
prior_box_data
[
prior_box_offset
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
prior_box_offset
+
3
]
-
prior_box_data
[
prior_box_offset
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
prior_box_data
[
prior_box_offset
]
+
prior_box_width
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
j
*
len
+
3
]
+
prior_box_data
[
j
*
len
+
1
])
/
2
;
prior_box_data
[
prior_box_offset
+
1
]
+
prior_box_height
/
2
;
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
if
(
prior_box_var
)
{
target_box_center_x
=
prior_box_var_data
[
j
*
len
]
*
int
prior_var_offset
=
0
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
if
(
axis
==
0
)
prior_var_offset
=
j
*
len
;
else
if
(
axis
==
1
)
prior_var_offset
=
i
*
len
;
}
target_box_center_x
=
prior_box_var_data
[
prior_var_offset
]
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
prior_box_var_data
[
j
*
len
+
1
]
*
target_box_center_y
=
prior_box_var_data
[
prior_var_offset
+
1
]
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
prior_box_var_data
[
j
*
len
+
2
]
*
target_box_width
=
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
prior_box_var_data
[
j
*
len
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
target_box_height
=
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
}
else
{
target_box_center_x
=
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
...
...
@@ -157,25 +175,29 @@ class BoxCoderKernel : public framework::OpKernel<T> {
auto
*
prior_box_var
=
context
.
Input
<
framework
::
Tensor
>
(
"PriorBoxVar"
);
auto
*
target_box
=
context
.
Input
<
framework
::
LoDTensor
>
(
"TargetBox"
);
auto
*
output_box
=
context
.
Output
<
framework
::
Tensor
>
(
"OutputBox"
);
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
if
(
target_box
->
lod
().
size
())
{
PADDLE_ENFORCE_EQ
(
target_box
->
lod
().
size
(),
1UL
,
"Only support 1 level of LoD."
);
}
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
auto
row
=
target_box
->
dims
()[
0
];
auto
col
=
prior_box
->
dims
()[
0
];
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
col
=
target_box
->
dims
()[
1
];
}
auto
len
=
prior_box
->
dims
()[
1
];
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
T
*
output
=
output_box
->
data
<
T
>
();
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
DecodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
axis
,
output
);
}
}
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
10dd3b37
...
...
@@ -342,6 +342,7 @@ def box_coder(prior_box,
target_box
,
code_type
=
"encode_center_size"
,
box_normalized
=
True
,
axis
=
0
,
name
=
None
):
"""
${comment}
...
...
@@ -352,6 +353,7 @@ def box_coder(prior_box,
target_box(${target_box_type}): ${target_box_comment}
code_type(${code_type_type}): ${code_type_comment}
box_normalized(${box_normalized_type}): ${box_normalized_comment}
axis(${axis_type}): ${axis_comment}
Returns:
output_box(${output_box_type}): ${output_box_comment}
...
...
@@ -372,8 +374,11 @@ def box_coder(prior_box,
"PriorBoxVar"
:
prior_box_var
,
"TargetBox"
:
target_box
},
attrs
=
{
"code_type"
:
code_type
,
"box_normalized"
:
box_normalized
},
attrs
=
{
"code_type"
:
code_type
,
"box_normalized"
:
box_normalized
,
"axis"
:
axis
},
outputs
=
{
"OutputBox"
:
output_box
})
return
output_box
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
10dd3b37
...
...
@@ -21,22 +21,32 @@ import math
from
op_test
import
OpTest
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
):
prior_box_x
=
(
(
prior_box
[:,
2
]
+
prior_box
[:,
0
])
/
2
).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_y
=
(
(
prior_box
[:,
3
]
+
prior_box
[:,
1
])
/
2
).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_width
=
(
(
prior_box
[:,
2
]
-
prior_box
[:,
0
])).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_height
=
(
(
prior_box
[:,
3
]
-
prior_box
[:,
1
])).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_var
=
prior_box_var
.
reshape
(
1
,
prior_box_var
.
shape
[
0
],
prior_box_var
.
shape
[
1
])
if
not
box_normalized
:
prior_box_height
=
prior_box_height
+
1
prior_box_width
=
prior_box_width
+
1
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
,
axis
=
0
):
prior_box_width
=
prior_box
[:,
2
]
-
prior_box
[:,
0
]
+
\
(
box_normalized
==
False
)
prior_box_height
=
prior_box
[:,
3
]
-
prior_box
[:,
1
]
+
\
(
box_normalized
==
False
)
prior_box_x
=
prior_box_width
*
0.5
+
prior_box
[:,
0
]
prior_box_y
=
prior_box_height
*
0.5
+
prior_box
[:,
1
]
if
axis
==
0
:
prior_box_width
=
prior_box_width
.
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_height
=
prior_box_height
.
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_x
=
prior_box_x
.
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_y
=
prior_box_y
.
reshape
(
1
,
prior_box
.
shape
[
0
])
else
:
prior_box_width
=
prior_box_width
.
reshape
(
prior_box
.
shape
[
0
],
1
)
prior_box_height
=
prior_box_height
.
reshape
(
prior_box
.
shape
[
0
],
1
)
prior_box_x
=
prior_box_x
.
reshape
(
prior_box
.
shape
[
0
],
1
)
prior_box_y
=
prior_box_y
.
reshape
(
prior_box
.
shape
[
0
],
1
)
if
prior_box_var
.
ndim
==
2
:
prior_box_var
=
prior_box_var
.
reshape
(
1
,
prior_box_var
.
shape
[
0
],
prior_box_var
.
shape
[
1
])
if
(
code_type
==
"EncodeCenterSize"
):
target_box_x
=
((
target_box
[:,
2
]
+
target_box
[:,
0
])
/
2
).
reshape
(
target_box
.
shape
[
0
],
1
)
...
...
@@ -49,26 +59,52 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type,
if
not
box_normalized
:
target_box_height
=
target_box_height
+
1
target_box_width
=
target_box_width
+
1
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
prior_box_width
/
\
prior_box_var
[:,:,
0
]
output_box
[:,:,
1
]
=
(
target_box_y
-
prior_box_y
)
/
prior_box_height
/
\
prior_box_var
[:,:,
1
]
output_box
[:,:,
2
]
=
np
.
log
(
np
.
fabs
(
target_box_width
/
prior_box_width
))
/
\
prior_box_var
[:,:,
2
]
output_box
[:,:,
3
]
=
np
.
log
(
np
.
fabs
(
target_box_height
/
prior_box_height
))
/
\
prior_box_var
[:,:,
3
]
if
prior_box_var
.
ndim
==
1
:
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
\
prior_box_width
/
\
prior_box_var
[
0
]
output_box
[:,:,
1
]
=
(
target_box_y
-
prior_box_y
)
/
\
prior_box_height
/
\
prior_box_var
[
1
]
output_box
[:,:,
2
]
=
np
.
log
(
np
.
fabs
(
target_box_width
/
\
prior_box_width
))
/
\
prior_box_var
[
2
]
output_box
[:,:,
3
]
=
np
.
log
(
np
.
fabs
(
target_box_height
/
\
prior_box_height
))
/
\
prior_box_var
[
3
]
else
:
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
\
prior_box_width
/
\
prior_box_var
[:,:,
0
]
output_box
[:,:,
1
]
=
(
target_box_y
-
prior_box_y
)
/
\
prior_box_height
/
\
prior_box_var
[:,:,
1
]
output_box
[:,:,
2
]
=
np
.
log
(
np
.
fabs
(
target_box_width
/
\
prior_box_width
))
/
\
prior_box_var
[:,:,
2
]
output_box
[:,:,
3
]
=
np
.
log
(
np
.
fabs
(
target_box_height
/
\
prior_box_height
))
/
\
prior_box_var
[:,:,
3
]
elif
(
code_type
==
"DecodeCenterSize"
):
target_box_x
=
prior_box_var
[:,:,
0
]
*
target_box
[:,:,
0
]
*
\
prior_box_width
+
prior_box_x
target_box_y
=
prior_box_var
[:,:,
1
]
*
target_box
[:,:,
1
]
*
\
prior_box_height
+
prior_box_y
target_box_width
=
np
.
exp
(
prior_box_var
[:,:,
2
]
*
target_box
[:,:,
2
])
*
\
prior_box_width
target_box_height
=
np
.
exp
(
prior_box_var
[:,:,
3
]
*
target_box
[:,:,
3
])
*
\
prior_box_height
if
prior_box_var
.
ndim
==
1
:
target_box_x
=
prior_box_var
[
0
]
*
target_box
[:,:,
0
]
*
\
prior_box_width
+
prior_box_x
target_box_y
=
prior_box_var
[
1
]
*
target_box
[:,:,
1
]
*
\
prior_box_height
+
prior_box_y
target_box_width
=
np
.
exp
(
prior_box_var
[
2
]
*
target_box
[:,:,
2
])
*
\
prior_box_width
target_box_height
=
np
.
exp
(
prior_box_var
[
3
]
*
target_box
[:,:,
3
])
*
\
prior_box_height
else
:
target_box_x
=
prior_box_var
[:,:,
0
]
*
target_box
[:,:,
0
]
*
\
prior_box_width
+
prior_box_x
target_box_y
=
prior_box_var
[:,:,
1
]
*
target_box
[:,:,
1
]
*
\
prior_box_height
+
prior_box_y
target_box_width
=
np
.
exp
(
prior_box_var
[:,:,
2
]
*
\
target_box
[:,:,
2
])
*
prior_box_width
target_box_height
=
np
.
exp
(
prior_box_var
[:,:,
3
]
*
\
target_box
[:,:,
3
])
*
prior_box_height
output_box
[:,
:,
0
]
=
target_box_x
-
target_box_width
/
2
output_box
[:,
:,
1
]
=
target_box_y
-
target_box_height
/
2
output_box
[:,
:,
2
]
=
target_box_x
+
target_box_width
/
2
...
...
@@ -78,10 +114,17 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type,
output_box
[:,
:,
3
]
=
output_box
[:,
:,
3
]
-
1
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
,
box_normalized
):
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
,
box_normalized
,
axis
=
0
):
n
=
target_box
.
shape
[
0
]
m
=
prior_box
.
shape
[
0
]
if
code_type
==
"DecodeCenterSize"
:
m
=
target_box
.
shape
[
1
]
output_box
=
np
.
zeros
((
n
,
m
,
4
),
dtype
=
np
.
float32
)
cur_offset
=
0
for
i
in
range
(
len
(
lod
)):
...
...
@@ -91,10 +134,8 @@ def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type,
output_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:,
:],
code_type
,
box_normalized
)
elif
(
code_type
==
"DecodeCenterSize"
):
box_coder
(
target_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:,
:],
prior_box
,
prior_box_var
,
output_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:,
:],
code_type
,
box_normalized
)
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
,
axis
)
cur_offset
+=
lod
[
i
]
return
output_box
...
...
@@ -111,6 +152,32 @@ class TestBoxCoderOp(OpTest):
target_box
=
np
.
random
.
random
((
5
,
10
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithOneRankVar
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
6
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
3
,
6
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
,
box_normalized
)
...
...
@@ -176,5 +243,34 @@ class TestBoxCoderOpWithLoD(OpTest):
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithAxis
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
5
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
,
6
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
axis
=
1
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
,
box_normalized
,
axis
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
,
'axis'
:
axis
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录