split_op.cc 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yancey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/split_op.h"
16

17
#include <string>
Y
Yancey 已提交
18

19 20 21
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/unary.h"

Y
Yancey 已提交
22 23 24 25 26 27 28 29
namespace paddle {
namespace operators {
using framework::Tensor;

class SplitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of SplitOp should not be null."));
    PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "Outputs(Out) of SplitOp should not be empty."));
    auto in_dims = ctx->GetInputDim("X");
    auto outs_names = ctx->Outputs("Out");
    size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
    size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
    std::vector<int> sections = static_cast<std::vector<int>>(
        ctx->Attrs().Get<std::vector<int>>("sections"));
    const size_t outs_number = outs_names.size();

    if (sections.size() > 0) {
      PADDLE_ENFORCE_EQ(
          sections.size(), outs_number,
          platform::errors::InvalidArgument("tensor split sections size "
                                            "should be equal to output size."));
    }

    if (ctx->HasInput("AxisTensor")) {
      auto out_dims = phi::make_ddim(std::vector<int>(in_dims.size(), -1));
      std::vector<framework::DDim> outs_dims(outs_number, out_dims);
      ctx->SetOutputsDim("Out", outs_dims);
      for (size_t i = 0; i < outs_number; ++i) {
        ctx->ShareLoD("X", "Out", 0, i);
      }
      return;
    }

    bool each_section_is_known =
        (sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));

    auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
                                    in_dims, num, sections, axis, outs_number);
    ctx->SetOutputsDim("Out", outs_dims);
    if (axis != 0) {
      // Only pass LoD when not spliting along the first dim.
      for (size_t i = 0; i < outs_number; ++i) {
        ctx->ShareLoD("X", "Out", 0, i);
      }
    }
  }

76 77 78
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
79 80 81 82 83
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
84 85 86
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
J
jakpiase 已提交
87
      // created, so in that scenario a fallback is needed
88 89
      const auto x_md = ctx.Input<Tensor>("X")->mem_desc();
      if (x_md.data.format_desc.blocking.inner_nblks == 0)
J
jakpiase 已提交
90 91 92
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
93 94 95
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
96 97 98 99 100 101 102 103 104 105 106
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor" || var_name == "SectionsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yancey 已提交
107 108 109 110
};

class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
111
  void Make() override {
112
    AddInput("X", "(Tensor) Input tensor of the split operator.");
113
    AddInput("AxisTensor",
T
tianshuo78520a 已提交
114
             "(Tensor) The axis which the input will be split on. "
115 116 117 118 119 120 121 122 123 124
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1]")
        .AsDispensable();
    AddInput("SectionsTensorList",
             "(vector<Tensor<int>>, optional). "
             "The length of each output along the specified axis. "
             "It has a higher priority than Attr(sections)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
125 126
    AddOutput("Out", "(Tensor) Output tensors of the split operator.")
        .AsDuplicable();
Y
Yancey 已提交
127
    AddComment(R"DOC(
128 129 130 131 132 133 134 135 136 137 138 139 140
Split operator

This operator splits the input tensor into multiple sub-tensors.

Example:
  Input = [[1,2],
           [3,4],
           [5,6]]
  sections = [2,1]
  axis = 0
  Output[0] = [[1,2],
               [3,4]]
  Output[1] = [[5,6]]
Y
Yancey 已提交
141 142 143

    )DOC");
    AddAttr<std::vector<int>>("sections",
144 145 146
                              "(vector<int>) "
                              "the length of each output along the "
                              "specified axis.")
Y
Yancey 已提交
147 148
        .SetDefault(std::vector<int>{});
    AddAttr<int>("num",
149 150
                 "(int, default 0)"
                 "Number of sub-tensors. This must evenly divide "
Y
Yancey 已提交
151 152
                 "Input.dims()[axis]")
        .SetDefault(0);
153 154
    AddAttr<int>("axis",
                 "(int, default 0) "
T
tianshuo78520a 已提交
155
                 "The axis which the input will be split on.")
Y
Yancey 已提交
156
        .SetDefault(0);
157 158 159 160 161 162 163 164
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
Y
Yancey 已提交
165 166 167 168 169 170 171
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
172 173 174

REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker,
                  ops::SplitGradMaker<paddle::framework::OpDesc>,
175
                  ops::SplitGradMaker<paddle::imperative::OpBase>);