split_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yancey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/split_op.h"
16
#include <string>
Y
Yancey 已提交
17

18 19 20
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/unary.h"

Y
Yancey 已提交
21 22 23 24 25 26 27 28
namespace paddle {
namespace operators {
using framework::Tensor;

class SplitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of SplitOp should not be null."));
    PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "Outputs(Out) of SplitOp should not be empty."));
    auto in_dims = ctx->GetInputDim("X");
    auto outs_names = ctx->Outputs("Out");
    size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
    size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
    std::vector<int> sections = static_cast<std::vector<int>>(
        ctx->Attrs().Get<std::vector<int>>("sections"));
    const size_t outs_number = outs_names.size();

    if (sections.size() > 0) {
      PADDLE_ENFORCE_EQ(
          sections.size(), outs_number,
          platform::errors::InvalidArgument("tensor split sections size "
                                            "should be equal to output size."));
    }

    if (ctx->HasInput("AxisTensor")) {
      auto out_dims = phi::make_ddim(std::vector<int>(in_dims.size(), -1));
      std::vector<framework::DDim> outs_dims(outs_number, out_dims);
      ctx->SetOutputsDim("Out", outs_dims);
      for (size_t i = 0; i < outs_number; ++i) {
        ctx->ShareLoD("X", "Out", 0, i);
      }
      return;
    }

    bool each_section_is_known =
        (sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));

    auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
                                    in_dims, num, sections, axis, outs_number);
    ctx->SetOutputsDim("Out", outs_dims);
    if (axis != 0) {
      // Only pass LoD when not spliting along the first dim.
      for (size_t i = 0; i < outs_number; ++i) {
        ctx->ShareLoD("X", "Out", 0, i);
      }
    }
  }

75 76 77
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
78 79 80 81 82
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
83 84 85
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
J
jakpiase 已提交
86 87
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
88
          phi::vectorize(ctx.Input<Tensor>("X")->dims()),
J
jakpiase 已提交
89 90 91 92 93
          dnnl::memory::data_type::f32, ctx.Input<Tensor>("X")->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
94 95 96
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
97 98 99 100 101 102 103 104 105 106 107
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor" || var_name == "SectionsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yancey 已提交
108 109 110 111
};

class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
112
  void Make() override {
113
    AddInput("X", "(Tensor) Input tensor of the split operator.");
114
    AddInput("AxisTensor",
T
tianshuo78520a 已提交
115
             "(Tensor) The axis which the input will be split on. "
116 117 118 119 120 121 122 123 124 125
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1]")
        .AsDispensable();
    AddInput("SectionsTensorList",
             "(vector<Tensor<int>>, optional). "
             "The length of each output along the specified axis. "
             "It has a higher priority than Attr(sections)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
126 127
    AddOutput("Out", "(Tensor) Output tensors of the split operator.")
        .AsDuplicable();
Y
Yancey 已提交
128
    AddComment(R"DOC(
129 130 131 132 133 134 135 136 137 138 139 140 141
Split operator

This operator splits the input tensor into multiple sub-tensors.

Example:
  Input = [[1,2],
           [3,4],
           [5,6]]
  sections = [2,1]
  axis = 0
  Output[0] = [[1,2],
               [3,4]]
  Output[1] = [[5,6]]
Y
Yancey 已提交
142 143 144

    )DOC");
    AddAttr<std::vector<int>>("sections",
145 146 147
                              "(vector<int>) "
                              "the length of each output along the "
                              "specified axis.")
Y
Yancey 已提交
148 149
        .SetDefault(std::vector<int>{});
    AddAttr<int>("num",
150 151
                 "(int, default 0)"
                 "Number of sub-tensors. This must evenly divide "
Y
Yancey 已提交
152 153
                 "Input.dims()[axis]")
        .SetDefault(0);
154 155
    AddAttr<int>("axis",
                 "(int, default 0) "
T
tianshuo78520a 已提交
156
                 "The axis which the input will be split on.")
Y
Yancey 已提交
157
        .SetDefault(0);
158 159 160 161 162 163 164 165
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
Y
Yancey 已提交
166 167 168 169 170 171 172
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
173 174 175

REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker,
                  ops::SplitGradMaker<paddle::framework::OpDesc>,
176
                  ops::SplitGradMaker<paddle::imperative::OpBase>);