prroi_pool_op.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <memory>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PRROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PRROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
43 44 45 46 47
    AddInput("BatchRoINums",
             "(Tensor), "
             "1-D tensor with shape [N], the number of"
             " rois for each image in batch, where N is the batch size")
        .AsDispensable();
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    AddOutput("Out",
              "(Tensor), "
              "the output of PRROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PRROIPool Operator**

Precise region of interest pooling (also known as PRROIPooling) is to perform
 bilinear interpolation average pooling method for RoI Pooling.

Please refer to https://arxiv.org/abs/1807.11590 for more details.

    )Doc");
  }
};

class PRROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
83 84 85 86
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasInput("ROIs"), "Input", "ROIs", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "prroi_pool");

87 88 89 90
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
91 92 93 94 95 96 97 98 99 100 101 102
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
        rois_dims.size(), 2,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
        rois_dims[1], 4,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
103 104 105 106 107
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE_GT(pooled_height, 0,
108 109
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
110
    PADDLE_ENFORCE_GT(pooled_width, 0,
111 112
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
113
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
114 115
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
116 117 118

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
119
    out_dims[1] = input_dims[1];
120 121
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
122 123 124 125 126 127 128 129

    if (ctx->HasInput("BatchRoINums")) {
      auto rois_batch_index = ctx->GetInputDim("BatchRoINums");
      PADDLE_ENFORCE_EQ(rois_batch_index[0], input_dims[0],
                        platform::errors::InvalidArgument(
                            "The length of BatchRoINums should equal to  "
                            "first dim of inputs(X)"));
    }
130 131 132 133 134 135
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
136 137 138
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
139 140 141 142 143 144 145 146
  }
};

class PRROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
147 148 149 150
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "prroi_pool");
151
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
152
    ctx->SetOutputDim(framework::GradVarName("ROIs"), ctx->GetInputDim("ROIs"));
153 154 155 156 157
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
158 159 160
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
161 162 163
  }
};

H
hong 已提交
164 165
template <typename T>
class PRROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
166
 public:
H
hong 已提交
167
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
168 169

 protected:
170
  void Apply(GradOpPtr<T> op) const override {
171
    op->SetType("prroi_pool_grad");
H
hong 已提交
172 173 174
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("ROIs", this->Input("ROIs"));
175
    op->SetInput("BatchRoINums", this->Input("BatchRoINums"));
H
hong 已提交
176 177 178 179
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("ROIs"), this->InputGrad("ROIs"));
    op->SetAttrMap(this->Attrs());
180 181 182 183 184 185 186
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(prroi_pool, ops::PRROIPoolOp, ops::PRROIPoolOpMaker,
H
hong 已提交
187 188
                  ops::PRROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PRROIPoolGradMaker<paddle::imperative::OpBase>);
189 190 191 192
REGISTER_OPERATOR(prroi_pool_grad, ops::PRROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    prroi_pool,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
193 194 195
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
196 197 198
REGISTER_OP_CPU_KERNEL(
    prroi_pool_grad,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
199 200 201
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);