bert_encoder_functor.cu 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

P
Pei Yang 已提交
15
#include <algorithm>
16

17 18 19 20
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
#include "paddle/fluid/platform/enforce.h"
21 22
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {

28
// NOTE(chenfeiyu): explicitly use operator+ for float2
29 30
// since float2 is not in namespace phi::funcs, ADL won't help
using phi::funcs::operator+;
31

W
wenbin 已提交
32 33 34 35 36 37 38 39
template <typename T>
__device__ __forceinline__ T local_rsqrt(T num) {
  return rsqrt(static_cast<float>(num));
}
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
__device__ __forceinline__ half local_rsqrt(half num) { return hrsqrt(num); }
#endif

40
template <typename T, int TPB>
41
__device__ inline void LayerNormSmall(T val,
42
                                      const phi::funcs::kvp<T> &thread_data,
43 44 45
                                      const int ld, const int idx,
                                      const float *bias, const float *scale,
                                      T *output, T eps) {
46
  using BlockReduce = cub::BlockReduce<phi::funcs::kvp<T>, TPB>;
47 48 49 50 51 52 53 54
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
W
wenbin 已提交
55
    rsigma = local_rsqrt(sum_kv.value - mu * mu + eps);
56 57 58 59 60 61 62 63 64 65 66
  }
  __syncthreads();

  if (threadIdx.x < ld) {
    const T g(scale[threadIdx.x]);
    const T b(bias[threadIdx.x]);
    output[idx] = g * (val - mu) * rsigma + b;
  }
}

template <typename T, int TPB>
67
__device__ inline void LayerNorm(const phi::funcs::kvp<T> &thread_data,
68 69 70
                                 const int ld, const int offset,
                                 const float *bias, const float *scale,
                                 T *output, T eps) {
71
  using BlockReduce = cub::BlockReduce<phi::funcs::kvp<T>, TPB>;
72 73 74 75 76 77 78 79
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
W
wenbin 已提交
80
    rsigma = local_rsqrt(sum_kv.value - mu * mu + eps);
81 82 83 84 85 86 87 88 89 90 91 92
  }
  __syncthreads();

  for (int i = threadIdx.x; i < ld; i += TPB) {
    const int idx = offset + i;
    const T val = output[idx];
    const T g(scale[i]);
    const T b(bias[i]);
    output[idx] = g * (val - mu) * rsigma + b;
  }
}

93
template <typename T, typename T2, int TPB>
94
__device__ inline void LayerNorm2(const phi::funcs::kvp<T> &thread_data,
95 96 97
                                  const int ld, const int offset,
                                  const float2 *bias, const float2 *scale,
                                  T2 *output, T eps) {
98
  using BlockReduce = cub::BlockReduce<phi::funcs::kvp<T>, TPB>;
99 100 101 102 103 104 105 106
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
W
wenbin 已提交
107
    rsigma = local_rsqrt(sum_kv.value - mu * mu + eps);
108 109 110 111 112 113 114 115 116 117 118 119 120 121
  }
  __syncthreads();

  for (int i = threadIdx.x; i < ld; i += TPB) {
    const int idx = offset + i;
    T2 val = output[idx];
    const float2 g = scale[i];
    const float2 b = bias[i];
    val.x = T(g.x) * (val.x - mu) * rsigma + T(b.x);
    val.y = T(g.y) * (val.y - mu) * rsigma + T(b.y);
    output[idx] = val;
  }
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
template <typename T, unsigned TPB>
__global__ void EmbEltwiseLayernormKernel(int hidden, const int64_t *ids,
                                          const float *scale, const float *bias,
                                          const int64_t *embs, T *output,
                                          float eps, int input_num) {
  cub::Sum pair_sum;
  // blockIdx.x: position in the sequence
  // blockIdx.y: batch
  // gridDim.x: Seq
  // gridDim.y: Batch

  extern __shared__ int64_t array_id[];

  const T rhidden = T(1.f) / T(hidden);
  const int64_t seq_pos = blockIdx.y + blockIdx.x * gridDim.y;
  if (threadIdx.x == 0) {
    for (int i = 0; i < input_num; ++i) {
      const int64_t *ids_p = reinterpret_cast<const int64_t *>(ids[i]);
      array_id[i] = ids_p[seq_pos];
    }
  }
  __syncthreads();

  const int64_t out_offset = seq_pos * hidden;

147
  phi::funcs::kvp<T> thread_data(0, 0);
148 149 150 151 152 153 154 155 156 157

#pragma unroll
  for (int it = threadIdx.x; it < hidden; it += TPB) {
    T val = 0;
    for (int i = 0; i < input_num; ++i) {
      val += reinterpret_cast<const T *>(embs[i])[array_id[i] * hidden + it];
    }

    output[out_offset + it] = val;
    const T rhiddenval = rhidden * val;
158 159
    thread_data =
        pair_sum(thread_data, phi::funcs::kvp<T>(rhiddenval, rhiddenval * val));
160 161 162 163
  }
  LayerNorm<T, TPB>(thread_data, hidden, out_offset, bias, scale, output, eps);
}

164 165
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: EmbEltwiseLayernormKernel
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <>
__global__ void EmbEltwiseLayernormKernel<half, 256>(
    int hidden, const int64_t *ids, const float *scale, const float *bias,
    const int64_t *embs, half *output, float eps, int input_num) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  cub::Sum pair_sum;
  // blockIdx.x: position in the sequence
  // blockIdx.y: batch
  // gridDim.x: Seq
  // gridDim.y: Batch

  extern __shared__ int64_t array_id[];

  const half rhidden = half(1.f) / half(hidden);
  const int64_t seq_pos = blockIdx.y + blockIdx.x * gridDim.y;
  if (threadIdx.x == 0) {
    for (int i = 0; i < input_num; ++i) {
      const int64_t *ids_p = reinterpret_cast<const int64_t *>(ids[i]);
      array_id[i] = ids_p[seq_pos];
    }
  }
  __syncthreads();

  const int64_t out_offset = seq_pos * hidden;

191
  phi::funcs::kvp<half> thread_data(0, 0);
192 193 194 195 196 197 198 199 200 201

#pragma unroll
  for (int it = threadIdx.x; it < hidden; it += 256) {
    half val = 0;
    for (int i = 0; i < input_num; ++i) {
      val += reinterpret_cast<const half *>(embs[i])[array_id[i] * hidden + it];
    }

    output[out_offset + it] = val;
    const half rhiddenval = rhidden * val;
202 203
    thread_data = pair_sum(thread_data,
                           phi::funcs::kvp<half>(rhiddenval, rhiddenval * val));
204 205 206 207 208
  }
  LayerNorm<half, 256>(thread_data, hidden, out_offset, bias, scale, output,
                       eps);
#endif
}
209
#endif  // @} End Half kernel: EmbEltwiseLayernormKernel
210

211 212 213 214
template <typename T>
void EmbEltwiseLayerNormFunctor<T>::operator()(
    int batch, int seq_len, int hidden, const int64_t *ids, const float *scale,
    const float *bias, const int64_t *embs, T *output, float eps, int input_num,
215
    gpuStream_t stream) {
216 217 218 219 220 221 222 223 224 225
  const unsigned tpb = 256;
  const dim3 grid(seq_len, batch, 1);
  const dim3 block(tpb, 1, 1);
  int shared_bytes = input_num * sizeof(int64_t);
  EmbEltwiseLayernormKernel<T, tpb><<<grid, block, shared_bytes, stream>>>(
      hidden, ids, scale, bias, embs, output, eps, input_num);
}

template class EmbEltwiseLayerNormFunctor<float>;

226
// device function 'operator()' is not supportted until cuda 10.0
227 228
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
229 230 231 232 233 234 235 236 237 238 239
template class EmbEltwiseLayerNormFunctor<half>;
#endif

template <typename T>
__global__ void SoftmaxKernelWithEltadd(T *qk_buf_, const T *bias_qk_,
                                        const int batch_size,
                                        const int head_num, const int seq_len,
                                        const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

240 241 242 243
  float tmp = threadIdx.x < seq_len
                  ? static_cast<float>(qk_buf_[threadIdx.x + qk_offset] +
                                       bias_qk_[threadIdx.x + qk_offset])
                  : -1e20f;
244
  float max_val = phi::funcs::blockReduceMax<float>(tmp, mask);
245

246
  float qk_tmp = threadIdx.x < seq_len ? __expf(tmp - max_val) : 0.0f;
247
  float sum_val = phi::funcs::blockReduceSum<float>(qk_tmp, mask);
248 249

  if (threadIdx.x < seq_len)
250 251 252
    qk_buf_[threadIdx.x + qk_offset] = (T)(qk_tmp / sum_val);
}

253 254
// HIP defined __HIP_NO_HALF_CONVERSIONS__
#ifndef __HIPCC__  // @{ Half kernel: SoftmaxKernelWithEltadd
255 256 257 258 259 260 261 262 263 264 265 266
template <>
__global__ void SoftmaxKernelWithEltadd<half>(
    half *qk_buf_, const half *bias_qk_, const int batch_size,
    const int head_num, const int seq_len, const unsigned mask) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float tmp = threadIdx.x < seq_len
                  ? static_cast<float>(qk_buf_[threadIdx.x + qk_offset] +
                                       bias_qk_[threadIdx.x + qk_offset])
                  : -1e20f;
267
  float max_val = phi::funcs::blockReduceMax<float>(tmp, mask);
268 269

  float qk_tmp = threadIdx.x < seq_len ? __expf(tmp - max_val) : 0.0f;
270
  float sum_val = phi::funcs::blockReduceSum<float>(qk_tmp, mask);
271 272 273 274 275

  if (threadIdx.x < seq_len)
    qk_buf_[threadIdx.x + qk_offset] = (half)(qk_tmp / sum_val);
#endif
}
276
#endif  // @} End Half kernel: SoftmaxKernelWithEltadd
277

278 279 280 281 282 283 284 285 286
template <typename T>
__global__ void SoftmaxKernelWithEltadd2(T *qk_buf_, const T *bias_qk_,
                                         const int batch_size,
                                         const int head_num, const int seq_len,
                                         const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  int idx = threadIdx.x;
  assert(blockDim.x % 32 == 0);

287
  float2 tmp = idx < seq_len
288 289
                   ? phi::funcs::ToFloat2<T>(qk_buf_[idx + qk_offset] +
                                             bias_qk_[idx + qk_offset])
290
                   : make_float2(-1e20f, -1e20f);
291
  float max_val = phi::funcs::blockReduceMax<float>(max(tmp.x, tmp.y), mask);
292 293 294
  float2 qk_tmp = idx < seq_len ? make_float2(__expf(tmp.x - max_val),
                                              __expf(tmp.y - max_val))
                                : make_float2(0.f, 0.f);
295
  float sum_val =
296
      phi::funcs::blockReduceSum<float>(qk_tmp.x + qk_tmp.y, mask) + 1e-6f;
297 298 299

  if (idx < seq_len) {
    qk_buf_[idx + qk_offset] =
300
        phi::funcs::FloatsToPair<T>(qk_tmp.x / sum_val, qk_tmp.y / sum_val);
301
  }
302 303
}

304 305 306 307 308
template <>
__global__ void SoftmaxKernelWithEltadd2<half2>(
    half2 *qk_buf_, const half2 *bias_qk_, const int batch_size,
    const int head_num, const int seq_len, const unsigned mask) {
// operator "+" of half only suppotted after cuda version 10.0
309
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
310
#if defined(PADDLE_WITH_CUDA) && \
311
    (CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__) && CUDA_VERSION >= 10000)
312 313 314 315
  int qk_offset = blockIdx.x * seq_len;
  int idx = threadIdx.x;
  assert(blockDim.x % 32 == 0);

316
  float2 tmp = idx < seq_len
317 318
                   ? phi::funcs::ToFloat2<half2>(qk_buf_[idx + qk_offset] +
                                                 bias_qk_[idx + qk_offset])
319
                   : make_float2(-1e20f, -1e20f);
320
  float max_val = phi::funcs::blockReduceMax<float>(max(tmp.x, tmp.y), mask);
321 322 323
  float2 qk_tmp = idx < seq_len ? make_float2(__expf(tmp.x - max_val),
                                              __expf(tmp.y - max_val))
                                : make_float2(0.f, 0.f);
324
  float sum_val =
325
      phi::funcs::blockReduceSum<float>(qk_tmp.x + qk_tmp.y, mask) + 1e-6f;
326 327

  if (idx < seq_len) {
328 329
    qk_buf_[idx + qk_offset] =
        phi::funcs::FloatsToPair<half2>(qk_tmp.x / sum_val, qk_tmp.y / sum_val);
330 331 332 333
  }
#endif
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
template <typename T>
__global__ void SoftmaxKernelWithEltaddForLarge(T *qk_buf, const T *bias_qk,
                                                const int batch_size,
                                                const int head_num,
                                                const int seq_len,
                                                const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  T stride_max = -1e20f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    stride_max = qk_buf[threadIdx.x + i + qk_offset] +
                             bias_qk[threadIdx.x + i + qk_offset] >
                         stride_max
                     ? qk_buf[threadIdx.x + i + qk_offset] +
                           bias_qk[threadIdx.x + i + qk_offset]
                     : stride_max;
  }
352
  T max_val = phi::funcs::blockReduceMax<T>(stride_max, mask);
353 354 355 356 357 358

  T stride_sum = 0.f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    stride_sum += __expf(qk_buf[threadIdx.x + i + qk_offset] +
                         bias_qk[threadIdx.x + i + qk_offset] - max_val);
  }
359
  T sum_val = phi::funcs::blockReduceSum<T>(stride_sum, mask);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

  for (int i = 0; i < seq_len; i += blockDim.x) {
    qk_buf[threadIdx.x + i + qk_offset] =
        (T)(__expf(qk_buf[threadIdx.x + i + qk_offset] +
                   bias_qk[threadIdx.x + i + qk_offset] - max_val) /
            sum_val);
  }
}

// HIP defined __HIP_NO_HALF_CONVERSIONS__
#ifndef __HIPCC__  // @{ Half kernel: SoftmaxKernelWithEltadd
template <>
__global__ void SoftmaxKernelWithEltaddForLarge(
    half *qk_buf, const half *bias_qk, const int batch_size, const int head_num,
    const int seq_len, const unsigned mask) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float stride_max = -1e20f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    float tmp = static_cast<float>(qk_buf[threadIdx.x + i + qk_offset] +
                                   bias_qk[threadIdx.x + i + qk_offset]);
    stride_max = tmp > stride_max ? tmp : stride_max;
  }
385
  float max_val = phi::funcs::blockReduceMax<float>(stride_max, mask);
386 387 388 389 390 391 392

  float stride_sum = 0.f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    float tmp = static_cast<float>(qk_buf[threadIdx.x + i + qk_offset] +
                                   bias_qk[threadIdx.x + i + qk_offset]);
    stride_sum += __expf(tmp - max_val);
  }
393
  float sum_val = phi::funcs::blockReduceSum<float>(stride_sum, mask);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

  for (int i = 0; i < seq_len; i += blockDim.x) {
    float tmp =
        __expf(static_cast<float>(qk_buf[threadIdx.x + i + qk_offset] +
                                  bias_qk[threadIdx.x + i + qk_offset]) -
               max_val);
    qk_buf[threadIdx.x + i + qk_offset] = (half)(tmp / sum_val);
  }
#endif
}
#endif  // @} End Half kernel: SoftmaxKernelWithEltadd

template <typename T>
__global__ void SoftmaxKernelWithEltaddForLarge2(T *qk_buf_, const T *bias_qk_,
                                                 const int batch_size,
                                                 const int head_num,
                                                 const int seq_len,
                                                 const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float2 stride_max = make_float2(-1e20f, -1e20f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
417 418
    float2 cur = phi::funcs::ToFloat2<T>(qk_buf_[threadIdx.x + i + qk_offset] +
                                         bias_qk_[threadIdx.x + i + qk_offset]);
419 420 421
    stride_max.x = max(stride_max.x, cur.x);
    stride_max.y = max(stride_max.y, cur.y);
  }
422
  float max_val =
423
      phi::funcs::blockReduceMax<float>(max(stride_max.x, stride_max.y), mask);
424 425 426

  float2 stride_sum = make_float2(0.f, 0.f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
427 428
    float2 cur = phi::funcs::ToFloat2<T>(qk_buf_[threadIdx.x + i + qk_offset] +
                                         bias_qk_[threadIdx.x + i + qk_offset]);
429 430 431 432 433
    stride_sum.x += __expf(cur.x - max_val);
    stride_sum.y += __expf(cur.y - max_val);
  }

  float sum_val =
434
      phi::funcs::blockReduceSum<float>(stride_sum.x + stride_sum.y, mask) +
435
      1e-6f;
436 437

  for (int i = 0; i < seq_len; i += blockDim.x) {
438 439 440
    float2 cur = phi::funcs::ToFloat2<T>(qk_buf_[threadIdx.x + i + qk_offset] +
                                         bias_qk_[threadIdx.x + i + qk_offset]);
    qk_buf_[threadIdx.x + i + qk_offset] = phi::funcs::FloatsToPair<T>(
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        __expf(cur.x - max_val) / sum_val, __expf(cur.y - max_val) / sum_val);
  }
}

template <>
__global__ void SoftmaxKernelWithEltaddForLarge2(
    half2 *qk_buf_, const half2 *bias_qk_, const int batch_size,
    const int head_num, const int seq_len, const unsigned mask) {
// operator "+" of half only suppotted after cuda version 10.0
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#if defined(PADDLE_WITH_CUDA) && \
    (CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__) && CUDA_VERSION >= 10000)

  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float2 stride_max = make_float2(-1e20f, -1e20f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
459
    float2 cur =
460 461
        phi::funcs::ToFloat2<half2>(qk_buf_[threadIdx.x + i + qk_offset] +
                                    bias_qk_[threadIdx.x + i + qk_offset]);
462 463 464
    stride_max.x = max(stride_max.x, cur.x);
    stride_max.y = max(stride_max.y, cur.y);
  }
465
  float max_val =
466
      phi::funcs::blockReduceMax<float>(max(stride_max.x, stride_max.y), mask);
467 468 469

  float2 stride_sum = make_float2(0.f, 0.f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
470
    float2 cur =
471 472
        phi::funcs::ToFloat2<half2>(qk_buf_[threadIdx.x + i + qk_offset] +
                                    bias_qk_[threadIdx.x + i + qk_offset]);
473 474 475 476 477
    stride_sum.x += __expf(cur.x - max_val);
    stride_sum.y += __expf(cur.y - max_val);
  }

  float sum_val =
478
      phi::funcs::blockReduceSum<float>(stride_sum.x + stride_sum.y, mask) +
479
      1e-6f;
480 481

  for (int i = 0; i < seq_len; i += blockDim.x) {
482
    float2 cur =
483 484 485
        phi::funcs::ToFloat2<half2>(qk_buf_[threadIdx.x + i + qk_offset] +
                                    bias_qk_[threadIdx.x + i + qk_offset]);
    qk_buf_[threadIdx.x + i + qk_offset] = phi::funcs::FloatsToPair<half2>(
486 487 488 489 490
        __expf(cur.x - max_val) / sum_val, __expf(cur.y - max_val) / sum_val);
  }
#endif
}

491 492 493 494 495 496 497 498 499 500 501
template <typename T>
inline void MatMulWithHeadQK(const platform::CUDADeviceContext &context,
                             int head_num, int seq_len, int size_per_head,
                             int batch_size, bool q_trans, bool k_trans,
                             T *q_buf_, T *k_buf_, T *qk_buf_, const T *bias_qk,
                             T alpha, T beta) {
  CBLAS_TRANSPOSE transA = !q_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !k_trans ? CblasNoTrans : CblasTrans;

  typedef typename CUDATypeTraits<T>::TYPE run_type;
  auto blas =
502
      phi::funcs::GetBlas<platform::CUDADeviceContext, run_type>(context);
503 504 505 506 507 508 509 510 511
  auto stream = context.stream();

  blas.BatchedGEMM(
      transA, transB, seq_len, seq_len, size_per_head,
      static_cast<run_type>(alpha), reinterpret_cast<run_type *>(q_buf_),
      reinterpret_cast<run_type *>(k_buf_), static_cast<run_type>(beta),
      reinterpret_cast<run_type *>(qk_buf_), batch_size * head_num,
      seq_len * size_per_head, seq_len * size_per_head);

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  if (seq_len <= 1024) {
    int grid = batch_size * head_num * seq_len;
    int block = seq_len;

    // Align block to 32, also limit seq_len to max block size.
    if (seq_len % 2 == 0) {
      block = (seq_len <= 64) ? 32 : ((seq_len + 63) / 64) * 32;
      if (std::is_same<T, float>::value) {
        SoftmaxKernelWithEltadd2<float2><<<grid, block, 0, stream>>>(
            reinterpret_cast<float2 *>(qk_buf_),
            reinterpret_cast<const float2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      } else {
        SoftmaxKernelWithEltadd2<__half2><<<grid, block, 0, stream>>>(
            reinterpret_cast<__half2 *>(qk_buf_),
            reinterpret_cast<const __half2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      }
530
    } else {
531 532 533
      block = (seq_len <= 32) ? 32 : ((seq_len + 31) / 32) * 32;
      SoftmaxKernelWithEltadd<T><<<grid, block, 0, stream>>>(
          qk_buf_, bias_qk, batch_size, head_num, seq_len, FINAL_MASK);
534 535
    }
  } else {
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    int grid = batch_size * head_num * seq_len;
    int block = 512;
    if (seq_len % 2 == 0) {
      if (std::is_same<T, float>::value) {
        SoftmaxKernelWithEltaddForLarge2<float2><<<grid, block, 0, stream>>>(
            reinterpret_cast<float2 *>(qk_buf_),
            reinterpret_cast<const float2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      } else {
        SoftmaxKernelWithEltaddForLarge2<__half2><<<grid, block, 0, stream>>>(
            reinterpret_cast<__half2 *>(qk_buf_),
            reinterpret_cast<const __half2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      }
    } else {
      SoftmaxKernelWithEltaddForLarge<T><<<grid, block, 0, stream>>>(
          qk_buf_, bias_qk, batch_size, head_num, seq_len, FINAL_MASK);
    }
554
  }
555 556 557 558 559 560 561 562 563 564 565 566 567
}

template <typename T>
inline void MatMulWithHeadQKV(const platform::CUDADeviceContext &context,
                              int head_num, int seq_len, int size_per_head,
                              int batch_size, bool qk_trans, bool v_trans,
                              T *v_buf_, const T *qk_buf_, T *dst, T alpha,
                              T beta) {
  int m = batch_size * seq_len;
  int k = head_num * size_per_head;

  typedef typename CUDATypeTraits<T>::TYPE run_type;
  auto blas =
568
      phi::funcs::GetBlas<platform::CUDADeviceContext, run_type>(context);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  auto stream = context.stream();
  CBLAS_TRANSPOSE transA = !qk_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !v_trans ? CblasNoTrans : CblasTrans;

  blas.BatchedGEMM(
      transA, transB, seq_len, size_per_head, seq_len,
      static_cast<run_type>(alpha), reinterpret_cast<const run_type *>(qk_buf_),
      reinterpret_cast<run_type *>(v_buf_), static_cast<run_type>(beta),
      reinterpret_cast<run_type *>(dst), batch_size * head_num,
      seq_len * seq_len, seq_len * size_per_head);
}

template <typename T>
void MultiHeadGPUComputeFunctor<T>::operator()(
    const platform::CUDADeviceContext &dev_ctx, int batch, int seq_len,
    int head_num, int head_size, T *qkptr, const T *bias_qk_ptr, T *tptr,
    T alpha, T beta) {
  auto stream = dev_ctx.stream();
  const int tsize = batch * head_num * seq_len * head_size;

  T *qptr = tptr;
  T *kptr = qptr + tsize;
  T *vptr = kptr + tsize;
  // batch gemm stride, softmaxwithscale.
  MatMulWithHeadQK<T>(dev_ctx, head_num, seq_len, head_size, batch, false, true,
                      qptr, kptr, qkptr, bias_qk_ptr, alpha, beta);
  // batch gemm stride, transpose.
  MatMulWithHeadQKV<T>(dev_ctx, head_num, seq_len, head_size, batch, false,
                       false, vptr, qkptr, tptr, T(1.0), beta);
}

template class MultiHeadGPUComputeFunctor<float>;

602
// device function 'operator()' is not supportted until cuda 10.0
603
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
604
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
605 606 607 608 609 610 611 612 613 614 615
template class MultiHeadGPUComputeFunctor<half>;
#endif

template <typename T, unsigned TPB>
__global__ void SkipLayerNormSmallKernel(int num, int hidden, const T *input1,
                                         const T *input2, T *output,
                                         const float *scale, const float *bias,
                                         float eps) {
  const T rld = T(1) / T(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
616
  phi::funcs::kvp<T> thread_data(0, 0);
617 618 619 620 621
  const int idx = offset + threadIdx.x;
  T val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const T rldval = rld * val;
622
    thread_data =
623
        pair_sum(thread_data, phi::funcs::kvp<T>(rldval, rldval * val));
624 625 626 627 628
  }
  LayerNormSmall<T, TPB>(val, thread_data, hidden, idx, bias, scale, output,
                         eps);
}

629 630
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: SkipLayerNormSmallKernel
631 632 633 634 635 636 637 638
template <>
__global__ void SkipLayerNormSmallKernel<half, 32>(
    int num, int hidden, const half *input1, const half *input2, half *output,
    const float *scale, const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
639
  phi::funcs::kvp<half> thread_data(0, 0);
640 641 642 643 644
  const int idx = offset + threadIdx.x;
  half val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const half rldval = rld * val;
645
    thread_data =
646
        pair_sum(thread_data, phi::funcs::kvp<half>(rldval, rldval * val));
647 648 649 650 651 652 653 654 655 656 657 658 659 660
  }
  LayerNormSmall<half, 32>(val, thread_data, hidden, idx, bias, scale, output,
                           eps);
#endif
}

template <>
__global__ void SkipLayerNormSmallKernel<half, 128>(
    int num, int hidden, const half *input1, const half *input2, half *output,
    const float *scale, const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
661
  phi::funcs::kvp<half> thread_data(0, 0);
662 663 664 665 666
  const int idx = offset + threadIdx.x;
  half val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const half rldval = rld * val;
667
    thread_data =
668
        pair_sum(thread_data, phi::funcs::kvp<half>(rldval, rldval * val));
669 670 671 672 673 674 675 676 677 678 679 680 681 682
  }
  LayerNormSmall<half, 128>(val, thread_data, hidden, idx, bias, scale, output,
                            eps);
#endif
}

template <>
__global__ void SkipLayerNormSmallKernel<half, 384>(
    int num, int hidden, const half *input1, const half *input2, half *output,
    const float *scale, const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
683
  phi::funcs::kvp<half> thread_data(0, 0);
684 685 686 687 688
  const int idx = offset + threadIdx.x;
  half val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const half rldval = rld * val;
689
    thread_data =
690
        pair_sum(thread_data, phi::funcs::kvp<half>(rldval, rldval * val));
691 692 693 694 695
  }
  LayerNormSmall<half, 384>(val, thread_data, hidden, idx, bias, scale, output,
                            eps);
#endif
}
696
#endif  // @} End Half kernel: SkipLayerNormSmallKernel
697

698 699 700 701 702 703 704 705
template <typename T, unsigned TPB>
__global__ void SkipLayerNormKernel(int num, int hidden, const T *input1,
                                    const T *input2, T *output,
                                    const float *scale, const float *bias,
                                    float eps) {
  const T rld = T(1) / T(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
706
  phi::funcs::kvp<T> thread_data(0, 0);
707 708 709 710 711

  for (int it = threadIdx.x; it < hidden; it += TPB) {
    const int idx = offset + it;
    const T val = input1[idx] + input2[idx];
    const T rldval = rld * val;
712
    thread_data =
713
        pair_sum(thread_data, phi::funcs::kvp<T>(rldval, rldval * val));
714 715 716 717 718
    output[idx] = val;
  }
  LayerNorm<T, TPB>(thread_data, hidden, offset, bias, scale, output, eps);
}

719 720
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: SkipLayerNormKernel
721 722 723 724 725 726 727 728 729 730
template <>
__global__ void SkipLayerNormKernel<half, 256>(int num, int hidden,
                                               const half *input1,
                                               const half *input2, half *output,
                                               const float *scale,
                                               const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
731
  phi::funcs::kvp<half> thread_data(0, 0);
732 733 734 735 736

  for (int it = threadIdx.x; it < hidden; it += 256) {
    const int idx = offset + it;
    const half val = input1[idx] + input2[idx];
    const half rldval = rld * val;
737
    thread_data =
738
        pair_sum(thread_data, phi::funcs::kvp<half>(rldval, rldval * val));
739 740 741 742 743
    output[idx] = val;
  }
  LayerNorm<half, 256>(thread_data, hidden, offset, bias, scale, output, eps);
#endif
}
744
#endif  // @} End Half kernel: SkipLayerNormKernel
745

746 747 748 749 750 751 752 753
template <typename T, typename T2, unsigned TPB>
__global__ void SkipLayerNormKernel2(int num, int hidden, const T2 *input1,
                                     const T2 *input2, T2 *output,
                                     const float2 *scale, const float2 *bias,
                                     float eps) {
  const T rld = T(0.5f / hidden);  // because hidden is hidden/2
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
754
  phi::funcs::kvp<T> thread_data(0, 0);
755 756 757 758 759

  for (int it = threadIdx.x; it < hidden; it += TPB) {
    const int idx = offset + it;
    const T2 val2 = input1[idx] + input2[idx];
    thread_data = pair_sum(
760
        thread_data,
761 762
        phi::funcs::kvp<T>(rld * (val2.x + val2.y),
                           rld * val2.x * val2.x + rld * val2.y * val2.y));
763 764 765 766 767
    output[idx] = val2;
  }
  LayerNorm2<T, T2, TPB>(thread_data, hidden, offset, bias, scale, output, eps);
}

768 769
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: SkipLayerNormKernel2
770 771 772 773 774 775 776 777 778
template <>
__global__ void SkipLayerNormKernel2<half, half2, 256>(
    int num, int hidden, const half2 *input1, const half2 *input2,
    half2 *output, const float2 *scale, const float2 *bias, float eps) {
// operator "+" of half only suppotted after cuda version 10.0
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__) && CUDA_VERSION >= 10000
  const half rld = half(0.5f / hidden);  // because hidden is hidden/2
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
779
  phi::funcs::kvp<half> thread_data(0, 0);
780 781 782 783 784

  for (int it = threadIdx.x; it < hidden; it += 256) {
    const int idx = offset + it;
    const half2 val2 = input1[idx] + input2[idx];
    thread_data = pair_sum(
785
        thread_data,
786 787
        phi::funcs::kvp<half>(rld * (val2.x + val2.y),
                              rld * val2.x * val2.x + rld * val2.y * val2.y));
788 789 790 791 792 793
    output[idx] = val2;
  }
  LayerNorm2<half, half2, 256>(thread_data, hidden, offset, bias, scale, output,
                               eps);
#endif
}
794
#endif  // @} End Half kernel: SkipLayerNormKernel2
795

796 797 798 799
template <typename T>
void SkipLayerNormFunctor<T>::operator()(const int num, const int hidden,
                                         const T *input1, const T *input2,
                                         const float *scale, const float *bias,
800
                                         T *output, T eps, gpuStream_t stream) {
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
  int block = num / hidden;
  if (hidden <= 32) {
    const int threads = 32;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else if (hidden <= 128) {
    const int threads = 128;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else if (hidden == 384) {
    const int threads = 384;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else {
    const int threads = 256;
816 817
    if (hidden % 2 == 0) {
      if (std::is_same<T, float>::value) {
818 819 820 821 822 823 824
        SkipLayerNormKernel2<float, float2, threads>
            <<<block, threads, 0, stream>>>(
                num, hidden / 2, reinterpret_cast<const float2 *>(input1),
                reinterpret_cast<const float2 *>(input2),
                reinterpret_cast<float2 *>(output),
                reinterpret_cast<const float2 *>(scale),
                reinterpret_cast<const float2 *>(bias), eps);
825 826
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__
827
      } else if (std::is_same<T, __half>::value) {
828 829 830 831 832 833 834
        SkipLayerNormKernel2<__half, __half2, threads>
            <<<block, threads, 0, stream>>>(
                num, hidden / 2, reinterpret_cast<const __half2 *>(input1),
                reinterpret_cast<const __half2 *>(input2),
                reinterpret_cast<__half2 *>(output),
                reinterpret_cast<const float2 *>(scale),
                reinterpret_cast<const float2 *>(bias), eps);
835
#endif
836 837 838 839 840 841 842 843
      } else {
        assert(false);
        // should not be here
      }
    } else {
      SkipLayerNormKernel<T, threads><<<block, threads, 0, stream>>>(
          num, hidden, input1, input2, output, scale, bias, eps);
    }
844 845 846 847 848
  }
}

template class SkipLayerNormFunctor<float>;

849
// device function 'operator()' is not supportted until cuda 10.0
850
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
851
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
852 853 854 855 856 857
template class SkipLayerNormFunctor<half>;
#endif

}  // namespace math
}  // namespace operators
}  // namespace paddle