Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
809a10b6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
809a10b6
编写于
1月 27, 2022
作者:
F
Feiyu Chan
提交者:
GitHub
1月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move math_cuda_utils.h to pten/kernels/funcs (#39246)
上级
3e6950d5
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
124 addition
and
95 deletion
+124
-95
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+0
-1
paddle/fluid/operators/interpolate_v2_op.cu
paddle/fluid/operators/interpolate_v2_op.cu
+10
-7
paddle/fluid/operators/math/bert_encoder_functor.cu
paddle/fluid/operators/math/bert_encoder_functor.cu
+101
-72
paddle/fluid/operators/optimizers/lars_momentum_op.cu
paddle/fluid/operators/optimizers/lars_momentum_op.cu
+9
-8
paddle/fluid/operators/softmax_cudnn_op.cu.h
paddle/fluid/operators/softmax_cudnn_op.cu.h
+0
-1
paddle/pten/kernels/funcs/math_cuda_utils.h
paddle/pten/kernels/funcs/math_cuda_utils.h
+4
-6
未找到文件。
paddle/fluid/operators/activation_op.cu
浏览文件 @
809a10b6
...
...
@@ -12,7 +12,6 @@ limitations under the License. */
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
...
...
paddle/fluid/operators/interpolate_v2_op.cu
浏览文件 @
809a10b6
...
...
@@ -12,11 +12,11 @@
#include <algorithm>
#include <string>
#include "paddle/fluid/operators/interpolate_v2_op.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/pten/kernels/funcs/math_cuda_utils.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -522,7 +522,7 @@ __inline__ __device__ T PartialBlockMin(T val, size_t threads_num_in_block,
if
(
threadIdx
.
x
<
threshold
)
{
shared_last_idx
=
(
threshold
>>
5
)
-
1
;
val
=
math
::
warpReduceMin
(
val
,
mask
);
val
=
pten
::
funcs
::
warpReduceMin
(
val
,
mask
);
if
(
lane
==
0
)
{
shared
[
wid
]
=
val
;
}
...
...
@@ -537,7 +537,7 @@ __inline__ __device__ T PartialBlockMin(T val, size_t threads_num_in_block,
if
(
threadIdx
.
x
<
threshold
)
{
val
=
(
lane
<=
shared_last_idx
)
?
shared
[
lane
]
:
std
::
numeric_limits
<
T
>::
max
();
val
=
math
::
warpReduceMin
(
val
,
mask
);
val
=
pten
::
funcs
::
warpReduceMin
(
val
,
mask
);
shared_last_val
=
val
;
}
__syncthreads
();
...
...
@@ -589,12 +589,15 @@ __global__ void KeBilinearInterpBwShareMemory(
s_data
[
0
][
threadIdx
.
x
]
=
0.
f
;
s_data
[
1
][
threadIdx
.
x
]
=
0.
f
;
int
remain
=
nthreads
-
(
tid
&
(
-
blockDim
.
x
));
int
in_top_max_index
=
math
::
blockReduceMax
(
top_right_index
,
FINAL_MASK
);
int
in_bot_max_index
=
math
::
blockReduceMax
(
bot_right_index
,
FINAL_MASK
);
int
in_top_max_index
=
pten
::
funcs
::
blockReduceMax
(
top_right_index
,
FINAL_MASK
);
int
in_bot_max_index
=
pten
::
funcs
::
blockReduceMax
(
bot_right_index
,
FINAL_MASK
);
if
(
remain
>
blockDim
.
x
)
{
in_top_min_index
=
math
::
blockReduceMin
(
input_index
,
FINAL_MASK
);
in_bot_min_index
=
math
::
blockReduceMin
(
bot_left_index
,
FINAL_MASK
);
in_top_min_index
=
pten
::
funcs
::
blockReduceMin
(
input_index
,
FINAL_MASK
);
in_bot_min_index
=
pten
::
funcs
::
blockReduceMin
(
bot_left_index
,
FINAL_MASK
);
}
else
{
in_top_min_index
=
PartialBlockMin
(
input_index
,
remain
,
FINAL_MASK
);
in_bot_min_index
=
PartialBlockMin
(
bot_left_index
,
remain
,
FINAL_MASK
);
...
...
paddle/fluid/operators/math/bert_encoder_functor.cu
浏览文件 @
809a10b6
...
...
@@ -18,13 +18,17 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/pten/kernels/funcs/math_cuda_utils.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
// NOTE(chenfeiyu): explicitly use operator+ for float2
// since float2 is not in namespace pten::funcs, ADL won't help
using
pten
::
funcs
::
operator
+
;
template
<
typename
T
>
__device__
__forceinline__
T
local_rsqrt
(
T
num
)
{
return
rsqrt
(
static_cast
<
float
>
(
num
));
...
...
@@ -34,11 +38,12 @@ __device__ __forceinline__ half local_rsqrt(half num) { return hrsqrt(num); }
#endif
template
<
typename
T
,
int
TPB
>
__device__
inline
void
LayerNormSmall
(
T
val
,
const
kvp
<
T
>
&
thread_data
,
__device__
inline
void
LayerNormSmall
(
T
val
,
const
pten
::
funcs
::
kvp
<
T
>
&
thread_data
,
const
int
ld
,
const
int
idx
,
const
float
*
bias
,
const
float
*
scale
,
T
*
output
,
T
eps
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
kvp
<
T
>
,
TPB
>
;
using
BlockReduce
=
cub
::
BlockReduce
<
pten
::
funcs
::
kvp
<
T
>
,
TPB
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
mu
;
// mean
__shared__
T
rsigma
;
// 1 / std.dev.
...
...
@@ -59,10 +64,11 @@ __device__ inline void LayerNormSmall(T val, const kvp<T> &thread_data,
}
template
<
typename
T
,
int
TPB
>
__device__
inline
void
LayerNorm
(
const
kvp
<
T
>
&
thread_data
,
const
int
ld
,
const
int
offset
,
const
float
*
bias
,
const
float
*
scale
,
T
*
output
,
T
eps
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
kvp
<
T
>
,
TPB
>
;
__device__
inline
void
LayerNorm
(
const
pten
::
funcs
::
kvp
<
T
>
&
thread_data
,
const
int
ld
,
const
int
offset
,
const
float
*
bias
,
const
float
*
scale
,
T
*
output
,
T
eps
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
pten
::
funcs
::
kvp
<
T
>
,
TPB
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
mu
;
// mean
__shared__
T
rsigma
;
// 1 / std.dev.
...
...
@@ -85,10 +91,11 @@ __device__ inline void LayerNorm(const kvp<T> &thread_data, const int ld,
}
template
<
typename
T
,
typename
T2
,
int
TPB
>
__device__
inline
void
LayerNorm2
(
const
kvp
<
T
>
&
thread_data
,
const
int
ld
,
const
int
offset
,
const
float2
*
bias
,
const
float2
*
scale
,
T2
*
output
,
T
eps
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
kvp
<
T
>
,
TPB
>
;
__device__
inline
void
LayerNorm2
(
const
pten
::
funcs
::
kvp
<
T
>
&
thread_data
,
const
int
ld
,
const
int
offset
,
const
float2
*
bias
,
const
float2
*
scale
,
T2
*
output
,
T
eps
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
pten
::
funcs
::
kvp
<
T
>
,
TPB
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
mu
;
// mean
__shared__
T
rsigma
;
// 1 / std.dev.
...
...
@@ -137,7 +144,7 @@ __global__ void EmbEltwiseLayernormKernel(int hidden, const int64_t *ids,
const
int64_t
out_offset
=
seq_pos
*
hidden
;
kvp
<
T
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
T
>
thread_data
(
0
,
0
);
#pragma unroll
for
(
int
it
=
threadIdx
.
x
;
it
<
hidden
;
it
+=
TPB
)
{
...
...
@@ -148,7 +155,8 @@ __global__ void EmbEltwiseLayernormKernel(int hidden, const int64_t *ids,
output
[
out_offset
+
it
]
=
val
;
const
T
rhiddenval
=
rhidden
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
T
>
(
rhiddenval
,
rhiddenval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
T
>
(
rhiddenval
,
rhiddenval
*
val
));
}
LayerNorm
<
T
,
TPB
>
(
thread_data
,
hidden
,
out_offset
,
bias
,
scale
,
output
,
eps
);
}
...
...
@@ -180,7 +188,7 @@ __global__ void EmbEltwiseLayernormKernel<half, 256>(
const
int64_t
out_offset
=
seq_pos
*
hidden
;
kvp
<
half
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
half
>
thread_data
(
0
,
0
);
#pragma unroll
for
(
int
it
=
threadIdx
.
x
;
it
<
hidden
;
it
+=
256
)
{
...
...
@@ -191,8 +199,8 @@ __global__ void EmbEltwiseLayernormKernel<half, 256>(
output
[
out_offset
+
it
]
=
val
;
const
half
rhiddenval
=
rhidden
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
half
>
(
rhiddenval
,
rhiddenval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
half
>
(
rhiddenval
,
rhiddenval
*
val
));
}
LayerNorm
<
half
,
256
>
(
thread_data
,
hidden
,
out_offset
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -233,10 +241,10 @@ __global__ void SoftmaxKernelWithEltadd(T *qk_buf_, const T *bias_qk_,
?
static_cast
<
float
>
(
qk_buf_
[
threadIdx
.
x
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
qk_offset
])
:
-
1e20
f
;
float
max_val
=
blockReduceMax
<
float
>
(
tmp
,
mask
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
tmp
,
mask
);
float
qk_tmp
=
threadIdx
.
x
<
seq_len
?
__expf
(
tmp
-
max_val
)
:
0.0
f
;
float
sum_val
=
blockReduceSum
<
float
>
(
qk_tmp
,
mask
);
float
sum_val
=
pten
::
funcs
::
blockReduceSum
<
float
>
(
qk_tmp
,
mask
);
if
(
threadIdx
.
x
<
seq_len
)
qk_buf_
[
threadIdx
.
x
+
qk_offset
]
=
(
T
)(
qk_tmp
/
sum_val
);
...
...
@@ -256,10 +264,10 @@ __global__ void SoftmaxKernelWithEltadd<half>(
?
static_cast
<
float
>
(
qk_buf_
[
threadIdx
.
x
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
qk_offset
])
:
-
1e20
f
;
float
max_val
=
blockReduceMax
<
float
>
(
tmp
,
mask
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
tmp
,
mask
);
float
qk_tmp
=
threadIdx
.
x
<
seq_len
?
__expf
(
tmp
-
max_val
)
:
0.0
f
;
float
sum_val
=
blockReduceSum
<
float
>
(
qk_tmp
,
mask
);
float
sum_val
=
pten
::
funcs
::
blockReduceSum
<
float
>
(
qk_tmp
,
mask
);
if
(
threadIdx
.
x
<
seq_len
)
qk_buf_
[
threadIdx
.
x
+
qk_offset
]
=
(
half
)(
qk_tmp
/
sum_val
);
...
...
@@ -276,19 +284,20 @@ __global__ void SoftmaxKernelWithEltadd2(T *qk_buf_, const T *bias_qk_,
int
idx
=
threadIdx
.
x
;
assert
(
blockDim
.
x
%
32
==
0
);
float2
tmp
=
idx
<
seq_len
?
ToFloat2
<
T
>
(
qk_buf_
[
idx
+
qk_offset
]
+
bias_qk_
[
idx
+
qk_offset
])
:
make_float2
(
-
1e20
f
,
-
1e20
f
);
float
max_val
=
blockReduceMax
<
float
>
(
max
(
tmp
.
x
,
tmp
.
y
),
mask
);
float2
tmp
=
idx
<
seq_len
?
pten
::
funcs
::
ToFloat2
<
T
>
(
qk_buf_
[
idx
+
qk_offset
]
+
bias_qk_
[
idx
+
qk_offset
])
:
make_float2
(
-
1e20
f
,
-
1e20
f
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
max
(
tmp
.
x
,
tmp
.
y
),
mask
);
float2
qk_tmp
=
idx
<
seq_len
?
make_float2
(
__expf
(
tmp
.
x
-
max_val
),
__expf
(
tmp
.
y
-
max_val
))
:
make_float2
(
0.
f
,
0.
f
);
float
sum_val
=
blockReduceSum
<
float
>
(
qk_tmp
.
x
+
qk_tmp
.
y
,
mask
)
+
1e-6
f
;
float
sum_val
=
pten
::
funcs
::
blockReduceSum
<
float
>
(
qk_tmp
.
x
+
qk_tmp
.
y
,
mask
)
+
1e-6
f
;
if
(
idx
<
seq_len
)
{
qk_buf_
[
idx
+
qk_offset
]
=
FloatsToPair
<
T
>
(
qk_tmp
.
x
/
sum_val
,
qk_tmp
.
y
/
sum_val
);
pten
::
funcs
::
FloatsToPair
<
T
>
(
qk_tmp
.
x
/
sum_val
,
qk_tmp
.
y
/
sum_val
);
}
}
...
...
@@ -304,18 +313,20 @@ __global__ void SoftmaxKernelWithEltadd2<half2>(
int
idx
=
threadIdx
.
x
;
assert
(
blockDim
.
x
%
32
==
0
);
float2
tmp
=
idx
<
seq_len
?
ToFloat2
<
half2
>
(
qk_buf_
[
idx
+
qk_offset
]
+
bias_qk_
[
idx
+
qk_offset
])
:
make_float2
(
-
1e20
f
,
-
1e20
f
);
float
max_val
=
blockReduceMax
<
float
>
(
max
(
tmp
.
x
,
tmp
.
y
),
mask
);
float2
tmp
=
idx
<
seq_len
?
pten
::
funcs
::
ToFloat2
<
half2
>
(
qk_buf_
[
idx
+
qk_offset
]
+
bias_qk_
[
idx
+
qk_offset
])
:
make_float2
(
-
1e20
f
,
-
1e20
f
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
max
(
tmp
.
x
,
tmp
.
y
),
mask
);
float2
qk_tmp
=
idx
<
seq_len
?
make_float2
(
__expf
(
tmp
.
x
-
max_val
),
__expf
(
tmp
.
y
-
max_val
))
:
make_float2
(
0.
f
,
0.
f
);
float
sum_val
=
blockReduceSum
<
float
>
(
qk_tmp
.
x
+
qk_tmp
.
y
,
mask
)
+
1e-6
f
;
float
sum_val
=
pten
::
funcs
::
blockReduceSum
<
float
>
(
qk_tmp
.
x
+
qk_tmp
.
y
,
mask
)
+
1e-6
f
;
if
(
idx
<
seq_len
)
{
qk_buf_
[
idx
+
qk_offset
]
=
FloatsToPair
<
half2
>
(
qk_tmp
.
x
/
sum_val
,
qk_tmp
.
y
/
sum_val
);
qk_buf_
[
idx
+
qk_offset
]
=
pten
::
funcs
::
FloatsToPair
<
half2
>
(
qk_tmp
.
x
/
sum_val
,
qk_tmp
.
y
/
sum_val
);
}
#endif
}
...
...
@@ -338,14 +349,14 @@ __global__ void SoftmaxKernelWithEltaddForLarge(T *qk_buf, const T *bias_qk,
bias_qk
[
threadIdx
.
x
+
i
+
qk_offset
]
:
stride_max
;
}
T
max_val
=
blockReduceMax
<
T
>
(
stride_max
,
mask
);
T
max_val
=
pten
::
funcs
::
blockReduceMax
<
T
>
(
stride_max
,
mask
);
T
stride_sum
=
0.
f
;
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
stride_sum
+=
__expf
(
qk_buf
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk
[
threadIdx
.
x
+
i
+
qk_offset
]
-
max_val
);
}
T
sum_val
=
blockReduceSum
<
T
>
(
stride_sum
,
mask
);
T
sum_val
=
pten
::
funcs
::
blockReduceSum
<
T
>
(
stride_sum
,
mask
);
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
qk_buf
[
threadIdx
.
x
+
i
+
qk_offset
]
=
...
...
@@ -371,7 +382,7 @@ __global__ void SoftmaxKernelWithEltaddForLarge(
bias_qk
[
threadIdx
.
x
+
i
+
qk_offset
]);
stride_max
=
tmp
>
stride_max
?
tmp
:
stride_max
;
}
float
max_val
=
blockReduceMax
<
float
>
(
stride_max
,
mask
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
stride_max
,
mask
);
float
stride_sum
=
0.
f
;
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
...
...
@@ -379,7 +390,7 @@ __global__ void SoftmaxKernelWithEltaddForLarge(
bias_qk
[
threadIdx
.
x
+
i
+
qk_offset
]);
stride_sum
+=
__expf
(
tmp
-
max_val
);
}
float
sum_val
=
blockReduceSum
<
float
>
(
stride_sum
,
mask
);
float
sum_val
=
pten
::
funcs
::
blockReduceSum
<
float
>
(
stride_sum
,
mask
);
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float
tmp
=
...
...
@@ -403,28 +414,33 @@ __global__ void SoftmaxKernelWithEltaddForLarge2(T *qk_buf_, const T *bias_qk_,
float2
stride_max
=
make_float2
(
-
1e20
f
,
-
1e20
f
);
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float2
cur
=
ToFloat2
<
T
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
float2
cur
=
pten
::
funcs
::
ToFloat2
<
T
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
stride_max
.
x
=
max
(
stride_max
.
x
,
cur
.
x
);
stride_max
.
y
=
max
(
stride_max
.
y
,
cur
.
y
);
}
float
max_val
=
blockReduceMax
<
float
>
(
max
(
stride_max
.
x
,
stride_max
.
y
),
mask
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
max
(
stride_max
.
x
,
stride_max
.
y
),
mask
);
float2
stride_sum
=
make_float2
(
0.
f
,
0.
f
);
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float2
cur
=
ToFloat2
<
T
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
float2
cur
=
pten
::
funcs
::
ToFloat2
<
T
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
stride_sum
.
x
+=
__expf
(
cur
.
x
-
max_val
);
stride_sum
.
y
+=
__expf
(
cur
.
y
-
max_val
);
}
float
sum_val
=
blockReduceSum
<
float
>
(
stride_sum
.
x
+
stride_sum
.
y
,
mask
)
+
1e-6
f
;
pten
::
funcs
::
blockReduceSum
<
float
>
(
stride_sum
.
x
+
stride_sum
.
y
,
mask
)
+
1e-6
f
;
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float2
cur
=
ToFloat2
<
T
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
=
FloatsToPair
<
T
>
(
float2
cur
=
pten
::
funcs
::
ToFloat2
<
T
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
=
pten
::
funcs
::
FloatsToPair
<
T
>
(
__expf
(
cur
.
x
-
max_val
)
/
sum_val
,
__expf
(
cur
.
y
-
max_val
)
/
sum_val
);
}
}
...
...
@@ -443,28 +459,33 @@ __global__ void SoftmaxKernelWithEltaddForLarge2(
float2
stride_max
=
make_float2
(
-
1e20
f
,
-
1e20
f
);
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float2
cur
=
ToFloat2
<
half2
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
float2
cur
=
pten
::
funcs
::
ToFloat2
<
half2
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
stride_max
.
x
=
max
(
stride_max
.
x
,
cur
.
x
);
stride_max
.
y
=
max
(
stride_max
.
y
,
cur
.
y
);
}
float
max_val
=
blockReduceMax
<
float
>
(
max
(
stride_max
.
x
,
stride_max
.
y
),
mask
);
float
max_val
=
pten
::
funcs
::
blockReduceMax
<
float
>
(
max
(
stride_max
.
x
,
stride_max
.
y
),
mask
);
float2
stride_sum
=
make_float2
(
0.
f
,
0.
f
);
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float2
cur
=
ToFloat2
<
half2
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
float2
cur
=
pten
::
funcs
::
ToFloat2
<
half2
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
stride_sum
.
x
+=
__expf
(
cur
.
x
-
max_val
);
stride_sum
.
y
+=
__expf
(
cur
.
y
-
max_val
);
}
float
sum_val
=
blockReduceSum
<
float
>
(
stride_sum
.
x
+
stride_sum
.
y
,
mask
)
+
1e-6
f
;
pten
::
funcs
::
blockReduceSum
<
float
>
(
stride_sum
.
x
+
stride_sum
.
y
,
mask
)
+
1e-6
f
;
for
(
int
i
=
0
;
i
<
seq_len
;
i
+=
blockDim
.
x
)
{
float2
cur
=
ToFloat2
<
half2
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
=
FloatsToPair
<
half2
>
(
float2
cur
=
pten
::
funcs
::
ToFloat2
<
half2
>
(
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
+
bias_qk_
[
threadIdx
.
x
+
i
+
qk_offset
]);
qk_buf_
[
threadIdx
.
x
+
i
+
qk_offset
]
=
pten
::
funcs
::
FloatsToPair
<
half2
>
(
__expf
(
cur
.
x
-
max_val
)
/
sum_val
,
__expf
(
cur
.
y
-
max_val
)
/
sum_val
);
}
#endif
...
...
@@ -595,13 +616,14 @@ __global__ void SkipLayerNormSmallKernel(int num, int hidden, const T *input1,
const
T
rld
=
T
(
1
)
/
T
(
hidden
);
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
T
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
T
>
thread_data
(
0
,
0
);
const
int
idx
=
offset
+
threadIdx
.
x
;
T
val
=
0
;
if
(
threadIdx
.
x
<
hidden
)
{
val
=
input1
[
idx
]
+
input2
[
idx
];
const
T
rldval
=
rld
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
T
>
(
rldval
,
rldval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
T
>
(
rldval
,
rldval
*
val
));
}
LayerNormSmall
<
T
,
TPB
>
(
val
,
thread_data
,
hidden
,
idx
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -617,13 +639,14 @@ __global__ void SkipLayerNormSmallKernel<half, 32>(
const
half
rld
=
half
(
1
)
/
half
(
hidden
);
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
half
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
half
>
thread_data
(
0
,
0
);
const
int
idx
=
offset
+
threadIdx
.
x
;
half
val
=
0
;
if
(
threadIdx
.
x
<
hidden
)
{
val
=
input1
[
idx
]
+
input2
[
idx
];
const
half
rldval
=
rld
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
half
>
(
rldval
,
rldval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
half
>
(
rldval
,
rldval
*
val
));
}
LayerNormSmall
<
half
,
32
>
(
val
,
thread_data
,
hidden
,
idx
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -638,13 +661,14 @@ __global__ void SkipLayerNormSmallKernel<half, 128>(
const
half
rld
=
half
(
1
)
/
half
(
hidden
);
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
half
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
half
>
thread_data
(
0
,
0
);
const
int
idx
=
offset
+
threadIdx
.
x
;
half
val
=
0
;
if
(
threadIdx
.
x
<
hidden
)
{
val
=
input1
[
idx
]
+
input2
[
idx
];
const
half
rldval
=
rld
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
half
>
(
rldval
,
rldval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
half
>
(
rldval
,
rldval
*
val
));
}
LayerNormSmall
<
half
,
128
>
(
val
,
thread_data
,
hidden
,
idx
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -659,13 +683,14 @@ __global__ void SkipLayerNormSmallKernel<half, 384>(
const
half
rld
=
half
(
1
)
/
half
(
hidden
);
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
half
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
half
>
thread_data
(
0
,
0
);
const
int
idx
=
offset
+
threadIdx
.
x
;
half
val
=
0
;
if
(
threadIdx
.
x
<
hidden
)
{
val
=
input1
[
idx
]
+
input2
[
idx
];
const
half
rldval
=
rld
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
half
>
(
rldval
,
rldval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
half
>
(
rldval
,
rldval
*
val
));
}
LayerNormSmall
<
half
,
384
>
(
val
,
thread_data
,
hidden
,
idx
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -681,13 +706,14 @@ __global__ void SkipLayerNormKernel(int num, int hidden, const T *input1,
const
T
rld
=
T
(
1
)
/
T
(
hidden
);
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
T
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
T
>
thread_data
(
0
,
0
);
for
(
int
it
=
threadIdx
.
x
;
it
<
hidden
;
it
+=
TPB
)
{
const
int
idx
=
offset
+
it
;
const
T
val
=
input1
[
idx
]
+
input2
[
idx
];
const
T
rldval
=
rld
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
T
>
(
rldval
,
rldval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
T
>
(
rldval
,
rldval
*
val
));
output
[
idx
]
=
val
;
}
LayerNorm
<
T
,
TPB
>
(
thread_data
,
hidden
,
offset
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -705,13 +731,14 @@ __global__ void SkipLayerNormKernel<half, 256>(int num, int hidden,
const
half
rld
=
half
(
1
)
/
half
(
hidden
);
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
half
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
half
>
thread_data
(
0
,
0
);
for
(
int
it
=
threadIdx
.
x
;
it
<
hidden
;
it
+=
256
)
{
const
int
idx
=
offset
+
it
;
const
half
val
=
input1
[
idx
]
+
input2
[
idx
];
const
half
rldval
=
rld
*
val
;
thread_data
=
pair_sum
(
thread_data
,
kvp
<
half
>
(
rldval
,
rldval
*
val
));
thread_data
=
pair_sum
(
thread_data
,
pten
::
funcs
::
kvp
<
half
>
(
rldval
,
rldval
*
val
));
output
[
idx
]
=
val
;
}
LayerNorm
<
half
,
256
>
(
thread_data
,
hidden
,
offset
,
bias
,
scale
,
output
,
eps
);
...
...
@@ -727,13 +754,14 @@ __global__ void SkipLayerNormKernel2(int num, int hidden, const T2 *input1,
const
T
rld
=
T
(
0.5
f
/
hidden
);
// because hidden is hidden/2
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
T
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
T
>
thread_data
(
0
,
0
);
for
(
int
it
=
threadIdx
.
x
;
it
<
hidden
;
it
+=
TPB
)
{
const
int
idx
=
offset
+
it
;
const
T2
val2
=
input1
[
idx
]
+
input2
[
idx
];
thread_data
=
pair_sum
(
thread_data
,
kvp
<
T
>
(
rld
*
(
val2
.
x
+
val2
.
y
),
thread_data
,
pten
::
funcs
::
kvp
<
T
>
(
rld
*
(
val2
.
x
+
val2
.
y
),
rld
*
val2
.
x
*
val2
.
x
+
rld
*
val2
.
y
*
val2
.
y
));
output
[
idx
]
=
val2
;
}
...
...
@@ -751,13 +779,14 @@ __global__ void SkipLayerNormKernel2<half, half2, 256>(
const
half
rld
=
half
(
0.5
f
/
hidden
);
// because hidden is hidden/2
const
int
offset
=
blockIdx
.
x
*
hidden
;
cub
::
Sum
pair_sum
;
kvp
<
half
>
thread_data
(
0
,
0
);
pten
::
funcs
::
kvp
<
half
>
thread_data
(
0
,
0
);
for
(
int
it
=
threadIdx
.
x
;
it
<
hidden
;
it
+=
256
)
{
const
int
idx
=
offset
+
it
;
const
half2
val2
=
input1
[
idx
]
+
input2
[
idx
];
thread_data
=
pair_sum
(
thread_data
,
kvp
<
half
>
(
rld
*
(
val2
.
x
+
val2
.
y
),
thread_data
,
pten
::
funcs
::
kvp
<
half
>
(
rld
*
(
val2
.
x
+
val2
.
y
),
rld
*
val2
.
x
*
val2
.
x
+
rld
*
val2
.
y
*
val2
.
y
));
output
[
idx
]
=
val2
;
}
...
...
paddle/fluid/operators/optimizers/lars_momentum_op.cu
浏览文件 @
809a10b6
...
...
@@ -14,9 +14,9 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/operators/optimizers/lars_momentum_op.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/pten/kernels/funcs/math_cuda_utils.h"
#if CUDA_VERSION >= 11000
#include <cooperative_groups.h>
...
...
@@ -170,8 +170,8 @@ __global__ void L2NormKernel(
g_tmp
+=
(
tmp1
*
tmp1
);
tid
+=
grid_stride
;
}
p_tmp
=
math
::
blockReduceSum
<
MT
>
(
p_tmp
,
FINAL_MASK
);
g_tmp
=
math
::
blockReduceSum
<
MT
>
(
g_tmp
,
FINAL_MASK
);
p_tmp
=
pten
::
funcs
::
blockReduceSum
<
MT
>
(
p_tmp
,
FINAL_MASK
);
g_tmp
=
pten
::
funcs
::
blockReduceSum
<
MT
>
(
g_tmp
,
FINAL_MASK
);
if
(
threadIdx
.
x
==
0
)
{
p_buffer
[
blockIdx
.
x
]
=
p_tmp
;
...
...
@@ -181,8 +181,8 @@ __global__ void L2NormKernel(
cg
->
sync
();
// Grid sync for writring partial result to gloabl memory
MT
p_part_sum
=
threadIdx
.
x
<
gridDim
.
x
?
p_buffer
[
threadIdx
.
x
]
:
0
;
MT
g_part_sum
=
threadIdx
.
x
<
gridDim
.
x
?
g_buffer
[
threadIdx
.
x
]
:
0
;
MT
tmp0
=
math
::
blockReduceSum
<
MT
>
(
p_part_sum
,
FINAL_MASK
);
MT
tmp1
=
math
::
blockReduceSum
<
MT
>
(
g_part_sum
,
FINAL_MASK
);
MT
tmp0
=
pten
::
funcs
::
blockReduceSum
<
MT
>
(
p_part_sum
,
FINAL_MASK
);
MT
tmp1
=
pten
::
funcs
::
blockReduceSum
<
MT
>
(
g_part_sum
,
FINAL_MASK
);
if
(
threadIdx
.
x
==
0
)
{
s_buffer
[
0
]
=
tmp0
;
s_buffer
[
1
]
=
tmp1
;
...
...
@@ -294,9 +294,10 @@ __global__ void MomentumLarsKernel(
MT
param_part_norm
=
threadIdx
.
x
<
thresh
?
p_buffer
[
threadIdx
.
x
]
:
0
;
MT
grad_part_norm
=
threadIdx
.
x
<
thresh
?
g_buffer
[
threadIdx
.
x
]
:
0
;
__syncthreads
();
MT
param_norm
=
Sqrt
(
math
::
blockReduceSum
<
MT
>
(
param_part_norm
,
FINAL_MASK
));
MT
grad_norm
=
Sqrt
(
rescale_grad_pow
*
math
::
blockReduceSum
<
MT
>
(
grad_part_norm
,
FINAL_MASK
));
MT
param_norm
=
Sqrt
(
pten
::
funcs
::
blockReduceSum
<
MT
>
(
param_part_norm
,
FINAL_MASK
));
MT
grad_norm
=
Sqrt
(
rescale_grad_pow
*
pten
::
funcs
::
blockReduceSum
<
MT
>
(
grad_part_norm
,
FINAL_MASK
));
#endif
MomentumUpdate
<
T
,
MT
>
(
param
,
grad
,
velocity
,
param_out
,
velocity_out
,
master_param
,
master_param_out
,
learning_rate
,
mu
,
...
...
paddle/fluid/operators/softmax_cudnn_op.cu.h
浏览文件 @
809a10b6
...
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
...
...
paddle/
fluid/operators/math
/math_cuda_utils.h
→
paddle/
pten/kernels/funcs
/math_cuda_utils.h
浏览文件 @
809a10b6
...
...
@@ -23,9 +23,8 @@ limitations under the License. */
#include <algorithm>
namespace
paddle
{
namespace
operators
{
namespace
math
{
namespace
pten
{
namespace
funcs
{
template
<
typename
T
>
__device__
__forceinline__
T
FromFloat
(
float
a
);
...
...
@@ -315,6 +314,5 @@ __inline__ __device__ T PartialBlockReduceMin(T val, unsigned mask) {
return
val
;
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
}
// namespace funcs
}
// namespace pten
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录