bpr_loss_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/bpr_loss_op.h"
16

S
sneaxiy 已提交
17
#include <memory>
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class BprLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
27 28 29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BprLoss");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BprLoss");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BprLoss");
30 31

    auto x_dims = ctx->GetInputDim("X");
32
    auto label_dims = ctx->GetInputDim("Label");
33
    int rank = x_dims.size();
34 35 36 37
    PADDLE_ENFORCE_EQ(
        rank, label_dims.size(),
        platform::errors::InvalidArgument(
            "Input(X) and Input(Label) shall have the same rank."));
P
phlrain 已提交
38

39
    if (ctx->IsRuntime() ||
40
        (phi::product(x_dims) > 0 && phi::product(label_dims) > 0)) {
41
      PADDLE_ENFORCE_EQ(
42 43
          phi::slice_ddim(x_dims, 0, rank - 1),
          phi::slice_ddim(label_dims, 0, rank - 1),
44 45 46
          platform::errors::InvalidArgument(
              "Input(X) and Input(Label) shall have the same shape "
              "except the last dimension."));
P
phlrain 已提交
47
    }
48 49 50 51 52 53 54 55 56 57 58 59

    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of Seq-bpr
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
60 61 62
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
63 64 65 66 67 68 69 70
  }
};

class BprLossGradientOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
71 72 73 74 75 76
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BprLossGradient");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BprLossGradient");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "BprLossGradient");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "BprLossGradient");
77 78

    auto x_dims = ctx->GetInputDim("X");
79
    auto label_dims = ctx->GetInputDim("Label");
80 81
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = x_dims.size();
82 83 84 85 86 87 88 89
    PADDLE_ENFORCE_EQ(
        dy_dims.size(), rank,
        platform::errors::InvalidArgument(
            "Input(Y@Grad) and Input(X) should have the same rank."));
    PADDLE_ENFORCE_EQ(
        label_dims.size(), rank,
        platform::errors::InvalidArgument(
            "Input(Label) and Input(X) should have the same rank."));
90 91
    PADDLE_ENFORCE_EQ(phi::slice_ddim(x_dims, 0, rank - 1),
                      phi::slice_ddim(label_dims, 0, rank - 1),
92 93 94
                      platform::errors::InvalidArgument(
                          "The Input(X) and Input(Label) should have the same "
                          "shape except the last dimension."));
95 96
    PADDLE_ENFORCE_EQ(phi::slice_ddim(x_dims, 0, rank - 1),
                      phi::slice_ddim(dy_dims, 0, rank - 1),
97 98 99
                      platform::errors::InvalidArgument(
                          "The Input(X) and Input(Y@Grad) should have the same "
                          "shape except the last dimension."));
100
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
101 102
                      platform::errors::InvalidArgument(
                          "The last dimension of Input(Y@Grad) should be 1."));
103
    PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
104 105
                      platform::errors::InvalidArgument(
                          " the last dimension of Input(Label) should be 1."));
106 107 108 109 110 111 112 113 114
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
115 116 117
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
118 119 120 121 122 123 124 125 126 127 128
  }
};

class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "real number.");
    AddInput(
129
        "Label",
130 131 132 133 134 135 136 137
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. the last dimension "
        "size is 1.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the sequence bpr loss.");
    AddComment(R"DOC(
138
Bayesian Personalized Ranking Loss Operator.
139

140
This operator belongs to pairwise ranking loss. Label is the desired item.
141
The loss at a given point in one session is defined as:
142 143 144
$Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$

Learn more details by reading paper <session-based recommendations with recurrent
145
neural networks>(https://arxiv.org/abs/1511.06939)
146 147 148 149

)DOC");
  }
};
S
sneaxiy 已提交
150

H
hong 已提交
151 152
template <typename T>
class BprLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
153
 public:
H
hong 已提交
154
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
155 156

 protected:
157
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
158
    op->SetType("bpr_loss_grad");
H
hong 已提交
159 160 161 162 163
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
164 165
  }
};
166 167 168 169 170 171 172
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(bpr_loss, ops::BprLossOp, ops::BprLossOpMaker,
H
hong 已提交
173 174
                  ops::BprLossGradMaker<paddle::framework::OpDesc>,
                  ops::BprLossGradMaker<paddle::imperative::OpBase>);
175 176 177 178 179 180
REGISTER_OPERATOR(bpr_loss_grad, ops::BprLossGradientOp);
REGISTER_OP_CPU_KERNEL(bpr_loss, ops::BprLossOpKernel<CPUCtx, float>,
                       ops::BprLossOpKernel<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(bpr_loss_grad,
                       ops::BprLossGradientOpKernel<CPUCtx, float>,
                       ops::BprLossGradientOpKernel<CPUCtx, double>);