bpr_loss_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/bpr_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class BprLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
26 27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BprLoss");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BprLoss");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BprLoss");
29 30

    auto x_dims = ctx->GetInputDim("X");
31
    auto label_dims = ctx->GetInputDim("Label");
32
    int rank = x_dims.size();
33 34 35 36
    PADDLE_ENFORCE_EQ(
        rank, label_dims.size(),
        platform::errors::InvalidArgument(
            "Input(X) and Input(Label) shall have the same rank."));
P
phlrain 已提交
37 38 39

    if (ctx->IsRuntime() || (framework::product(x_dims) > 0 &&
                             framework::product(label_dims) > 0)) {
40 41 42 43 44 45
      PADDLE_ENFORCE_EQ(
          framework::slice_ddim(x_dims, 0, rank - 1),
          framework::slice_ddim(label_dims, 0, rank - 1),
          platform::errors::InvalidArgument(
              "Input(X) and Input(Label) shall have the same shape "
              "except the last dimension."));
P
phlrain 已提交
46
    }
47 48 49 50 51 52 53 54 55 56 57 58

    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of Seq-bpr
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
59 60 61
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
62 63 64 65 66 67 68 69
  }
};

class BprLossGradientOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
70 71 72 73 74 75
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BprLossGradient");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BprLossGradient");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "BprLossGradient");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "BprLossGradient");
76 77

    auto x_dims = ctx->GetInputDim("X");
78
    auto label_dims = ctx->GetInputDim("Label");
79 80
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = x_dims.size();
81 82 83 84 85 86 87 88
    PADDLE_ENFORCE_EQ(
        dy_dims.size(), rank,
        platform::errors::InvalidArgument(
            "Input(Y@Grad) and Input(X) should have the same rank."));
    PADDLE_ENFORCE_EQ(
        label_dims.size(), rank,
        platform::errors::InvalidArgument(
            "Input(Label) and Input(X) should have the same rank."));
89
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
90
                      framework::slice_ddim(label_dims, 0, rank - 1),
91 92 93
                      platform::errors::InvalidArgument(
                          "The Input(X) and Input(Label) should have the same "
                          "shape except the last dimension."));
94 95
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(dy_dims, 0, rank - 1),
96 97 98
                      platform::errors::InvalidArgument(
                          "The Input(X) and Input(Y@Grad) should have the same "
                          "shape except the last dimension."));
99
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
100 101
                      platform::errors::InvalidArgument(
                          "The last dimension of Input(Y@Grad) should be 1."));
102
    PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
103 104
                      platform::errors::InvalidArgument(
                          " the last dimension of Input(Label) should be 1."));
105 106 107 108 109 110 111 112 113
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
114 115 116
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
117 118 119 120 121 122 123 124 125 126 127
  }
};

class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "real number.");
    AddInput(
128
        "Label",
129 130 131 132 133 134 135 136
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. the last dimension "
        "size is 1.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the sequence bpr loss.");
    AddComment(R"DOC(
137
Bayesian Personalized Ranking Loss Operator.
138

139
This operator belongs to pairwise ranking loss. Label is the desired item.
140
The loss at a given point in one session is defined as:
141 142 143
$Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$

Learn more details by reading paper <session-based recommendations with recurrent
144
neural networks>(https://arxiv.org/abs/1511.06939)
145 146 147 148

)DOC");
  }
};
S
sneaxiy 已提交
149

H
hong 已提交
150 151
template <typename T>
class BprLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
152
 public:
H
hong 已提交
153
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
154 155

 protected:
156
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
157
    op->SetType("bpr_loss_grad");
H
hong 已提交
158 159 160 161 162
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
163 164
  }
};
165 166 167 168 169 170 171
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(bpr_loss, ops::BprLossOp, ops::BprLossOpMaker,
H
hong 已提交
172 173
                  ops::BprLossGradMaker<paddle::framework::OpDesc>,
                  ops::BprLossGradMaker<paddle::imperative::OpBase>);
174 175 176 177 178 179
REGISTER_OPERATOR(bpr_loss_grad, ops::BprLossGradientOp);
REGISTER_OP_CPU_KERNEL(bpr_loss, ops::BprLossOpKernel<CPUCtx, float>,
                       ops::BprLossOpKernel<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(bpr_loss_grad,
                       ops::BprLossGradientOpKernel<CPUCtx, float>,
                       ops::BprLossGradientOpKernel<CPUCtx, double>);