benchmark.cc 5.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

// #include <cstring>  // for memcpy
// #include <random>
#include <iostream>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

// return this function avg time
template <typename T, typename Func>
double BenchTartgetFunc(const Func tgt, const std::vector<T>& x,
                        const std::vector<T>& y, std::vector<T>& z) {  // NOLINT
  const T* x_data = x.data();
  const T* y_data = y.data();
  const int d = z.size();
  T* z_data = z.data();

  for (int i = 0; i < FLAGS_burning; ++i) {
    tgt(x_data, y_data, z_data, d);
  }
  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeat; ++i) {
    tgt(x_data, y_data, z_data, d);
  }
  auto end = GetCurrentUS();
  return (end - start) / FLAGS_repeat;
}

// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  using T = float;
  using PlaceType = paddle::platform::CPUPlace;
  namespace jit = paddle::operators::jit;
  const auto KT = jit::vmul;
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
  for (int d : TestSizes()) {
    // for (kernels type) {  // TODO(TJ): more jit::KernelType
    std::vector<std::pair<std::string, double>> infos;
    std::vector<T> x(d), y(d), z(d);
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());
    // refer
    auto refer = jit::GetRefer<KT, T, jit::VMulTuples<T>::func_type,
                               jit::VMulTuples<T>::attr_type>();
    if (refer) {
      auto res =
          BenchTartgetFunc<T, jit::VMulTuples<T>::func_type>(refer, x, y, z);
      infos.push_back(std::make_pair("Refer", res));
    }

    // test jitcode
    auto jitcode = jit::GetJitCode<KT, T, jit::VMulTuples<T>::func_type,
                                   jit::VMulTuples<T>::attr_type, PlaceType>(d);
    if (jitcode) {
      auto res =
          BenchTartgetFunc<T, jit::VMulTuples<T>::func_type>(jitcode, x, y, z);
      infos.push_back(std::make_pair("JitCode", res));
    }

    // test all impls in more
    jit::KernelKey kkey(KT, PlaceType());
    auto& pool = jit::KernelPool().Instance().AllKernels();
    auto iter = pool.find(kkey);
    if (iter != pool.end()) {
      auto& impls = iter->second;
      for (auto& impl : impls) {
        auto i =
            dynamic_cast<const jit::KernelImpl<T, jit::VMulTuples<T>::func_type,
                                               jit::VMulTuples<T>::attr_type>*>(
                impl.get());
        if (i && i->UseMe(d)) {
          auto more = i->GetFunc();
          auto res =
              BenchTartgetFunc<T, jit::VMulTuples<T>::func_type>(more, x, y, z);
          infos.push_back(std::make_pair("More", res));
        }
      }
    }

    // Test result from Get function
    auto tgt = jit::Get<KT, T, jit::VMulTuples<T>::func_type,
                        jit::VMulTuples<T>::attr_type, PlaceType>(d);
    if (!tgt) {
      LOG(ERROR) << "Target can not be empty!";
    }
    auto res = BenchTartgetFunc<T, jit::VMulTuples<T>::func_type>(tgt, x, y, z);
    infos.push_back(std::make_pair("Target", res));

    // print
    std::ostringstream loginfos;
    loginfos << "Kernel Type: " << KT << ", size " << d << ": ";
    for (auto pair : infos) {
      loginfos << pair.first << " takes " << pair.second << " us; ";
    }
    LOG(INFO) << loginfos.str();
    // }
  }
}