executor.cc 22.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
16
#include <memory>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/feed_fetch_method.h"
D
dongdaxiang 已提交
18 19
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
Z
Zeng Jinle 已提交
20
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
21
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/platform/profiler.h"
25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yang Yu 已提交
29

D
dzhwinter 已提交
30
DECLARE_bool(benchmark);
31
DECLARE_bool(use_mkldnn);
Q
qijun 已提交
32 33 34

namespace paddle {
namespace framework {
X
Xin Pan 已提交
35 36 37 38 39
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
40

Q
Qiao Longfei 已提交
41
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
42 43 44 45 46
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
47 48 49
  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
50 51 52
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
53
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
54
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
55
  }
56 57 58 59 60 61

  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
  }

S
sneaxiy 已提交
62
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
63
}
Y
Yu Yang 已提交
64

Q
Qiao Longfei 已提交
65
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
66
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
67
}
Y
Yu Yang 已提交
68

D
dzhwinter 已提交
69
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
70

71 72
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
73
  // Clear mkl-dnn cache,
74
  // this is needed to have mkl-dnn unit tests working
75
  ClearMKLDNNCache(place_, this);
76 77 78
#endif
}

Y
Yancey1989 已提交
79
void Executor::Close() {
T
tangwei12 已提交
80 81 82 83 84 85 86
  // #ifdef PADDLE_WITH_DISTRIBUTE
  //   // TODO(typhoonzero): complete message will need to use real trainer_id,
  //   // except 0.
  //   auto client =
  //       paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  //   client->SendComplete();
  // #endif
Y
Yancey1989 已提交
87
}
W
Wu Yi 已提交
88

L
Liu Yiqun 已提交
89 90
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
91
  VLOG(3) << "Creating Variables for block " << block_id;
L
Liu Yiqun 已提交
92
  auto& global_block = pdesc.Block(block_id);
93 94 95 96 97 98 99 100 101 102 103 104
  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }
  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
S
Steffy-zxf 已提交
105 106

        VLOG(3) << "Initialize Variable " << var->Name();
107
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
108
        VLOG(3) << "Create Variable " << var->Name()
S
Steffy-zxf 已提交
109 110
                << " global, which pointer is " << ptr << " type is "
                << static_cast<int>(var->GetType());
111 112
      } else {
        auto* ptr = scope->Var(var->Name());
113
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
114
        VLOG(3) << "Create Variable " << var->Name()
S
Steffy-zxf 已提交
115 116
                << " locally, which pointer is " << ptr << "Variable Type "
                << static_cast<int>(var->GetType());
117 118 119 120 121
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
122
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
123 124
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
125 126 127 128
    }
  }
}

129 130 131
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
132
  VLOG(3) << "Start to InitForDataset in executor";
D
dongdaxiang 已提交
133
  TrainerDesc trainer_desc;
H
hutuxian 已提交
134
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
135 136 137 138
  PADDLE_ENFORCE_EQ(success, true,
                    platform::errors::PreconditionNotMet(
                        "Fail to parse TrainerDesc from string:\n%s",
                        trainer_desc_str.c_str()));
D
dongdaxiang 已提交
139 140 141 142 143 144 145 146
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
147
  trainer->SetScope(scope);
D
dongdaxiang 已提交
148 149 150 151 152
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
153 154 155 156
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
157 158 159
  PADDLE_ENFORCE_NOT_NULL(
      trainer, platform::errors::InvalidArgument(
                   "Trainer is nullptr, invoke InitForDataset first"));
D
dongdaxiang 已提交
160 161 162
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
D
Dong Daxiang 已提交
163 164 165
}

void Executor::ReleaseTrainer(std::shared_ptr<TrainerBase> trainer) {
D
dongdaxiang 已提交
166 167 168
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
169

Y
Yu Yang 已提交
170
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
171 172
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
173
                   bool force_disable_gc, bool keep_kid_scopes) {
X
Xin Pan 已提交
174
  platform::RecordBlock b(block_id);
175
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
176 177 178
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
#endif
S
sneaxiy 已提交
179
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
180 181
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars,
                     keep_kid_scopes);
Q
qijun 已提交
182 183
}

184 185 186 187 188 189 190
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
191
    const BlockDesc& block,
L
Liu Yiqun 已提交
192
    const std::map<std::string, const LoDTensor*>& feed_targets,
193 194
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
195
  for (auto* op : block.AllOps()) {
196 197
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
198
      // The input variable's name of feed_op should be feed_holder_name.
199 200 201 202 203
      PADDLE_ENFORCE_EQ(
          op->Input("X")[0], feed_holder_name,
          platform::errors::PreconditionNotMet(
              "Input to feed op should be '%s', but received '%s'.",
              feed_holder_name, op->Input("X")[0]));
204
      std::string feed_target_name = op->Output("Out")[0];
205 206 207 208 209
      PADDLE_ENFORCE_NE(feed_targets.find(feed_target_name), feed_targets.end(),
                        platform::errors::PreconditionNotMet(
                            "Feed operator output name '%s' cannot be found in "
                            "'feed_targets'",
                            feed_target_name));
210 211 212 213 214 215
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
216 217 218 219
        platform::errors::PreconditionNotMet(
            "The number of feed operators should match 'feed_targets', but "
            "received feed_count: %zu, required feed_targets.size(): %zu.",
            feed_count, feed_targets.size()));
220

221
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
222
      // When feed operator are present, so should be feed_holder.
223
      auto var = block.FindVar(feed_holder_name);
224 225 226 227 228 229 230 231 232 233
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable", feed_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FEED_MINIBATCH,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FEED_MINIBATCH' type, but received "
              "'%s'.",
              feed_holder_name, DataTypeToString(var->GetType())));
234
    }
235 236 237 238 239 240 241 242 243 244 245 246
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
247
    const BlockDesc& block,
248
    const std::map<std::string, FetchType*>& fetch_targets,
249 250
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
251
  for (auto* op : block.AllOps()) {
252 253
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
254
      // The output variable's name of fetch_op should be fetch_holder_name.
255 256 257 258 259
      PADDLE_ENFORCE_EQ(
          op->Output("Out")[0], fetch_holder_name,
          platform::errors::PreconditionNotMet(
              "Output of fetch op should be '%s', but received '%s'.",
              fetch_holder_name, op->Output("Out")[0]));
260
      std::string fetch_target_name = op->Input("X")[0];
261 262 263 264 265 266
      PADDLE_ENFORCE_NE(fetch_targets.find(fetch_target_name),
                        fetch_targets.end(),
                        platform::errors::NotFound(
                            "Fetch operator input name '%s' cannot be found in "
                            "'fetch_targets'.",
                            fetch_target_name));
267 268 269 270 271 272
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
273 274 275 276
        platform::errors::PreconditionNotMet(
            "The number of fetch operators should match 'fetch_targets', but "
            "received fetch_count: %zu, required fetch_targets.size(): %zu.",
            fetch_count, fetch_targets.size()));
277

278
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
279
      // When fetch operator are present, so should be fetch_holder.
280
      auto var = block.FindVar(fetch_holder_name);
281 282 283 284 285 286 287 288 289
      PADDLE_ENFORCE_NOT_NULL(
          var,
          platform::errors::PreconditionNotMet(
              "Block should already have a '%s' variable.", fetch_holder_name));
      PADDLE_ENFORCE_EQ(
          var->GetType(), proto::VarType::FETCH_LIST,
          platform::errors::PreconditionNotMet(
              "'%s' variable should be 'FETCH_LIST' type, but received '%s'.",
              fetch_holder_name, DataTypeToString(var->GetType())));
290
    }
291 292 293 294 295 296
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
297
                   std::map<std::string, const LoDTensor*>* feed_targets,
298
                   std::map<std::string, FetchType*>* fetch_targets,
W
Wu Yi 已提交
299 300
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
301
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
302
  platform::RecordBlock b(kProgramId);
303
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
304 305 306
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
#endif
307
  bool has_feed_ops =
308
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
309
  bool has_fetch_ops =
310
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
311 312

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
313
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
314
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
315 316
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
317
  }
318 319
  auto* global_block = copy_program->MutableBlock(0);

320
  if (!has_feed_ops) {
321 322
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
323
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
324 325 326
    feed_holder->SetPersistable(true);

    int i = 0;
327
    for (auto& feed_target : (*feed_targets)) {
328
      std::string var_name = feed_target.first;
M
minqiyang 已提交
329
      VLOG(3) << "feed target's name: " << var_name;
330 331 332 333 334 335 336 337 338 339 340 341 342

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

343
  if (!has_fetch_ops) {
344 345
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
346
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
347 348 349
    fetch_holder->SetPersistable(true);

    int i = 0;
350
    for (auto& fetch_target : (*fetch_targets)) {
351
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
352
      VLOG(3) << "fetch target's name: " << var_name;
353 354 355 356 357 358 359 360 361 362 363 364 365

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

366
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
367 368 369
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
370 371
}

Q
Qiao Longfei 已提交
372
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
373
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
374
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
375 376
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
377 378 379 380 381
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size(),
                    platform::errors::InvalidArgument(
                        "Input block id = %d, but it should be less than "
                        "program.size() which is %d",
                        static_cast<size_t>(block_id), program.Size()));
Y
Yu Yang 已提交
382 383 384 385
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
S
sneaxiy 已提交
386
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
387
  return ctx;
Y
Yu Yang 已提交
388 389
}

T
refine  
typhoonzero 已提交
390
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
391
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
392 393
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
394
  PADDLE_ENFORCE_EQ(
S
fix bug  
sneaxiy 已提交
395
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
396 397 398 399
      true,
      platform::errors::InvalidArgument("skip_ref_cnt_vars should be either "
                                        "empty or equals to block number %d",
                                        block_ids.size()));
T
typhoonzero 已提交
400
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
401
  size_t idx = 0;
T
typhoonzero 已提交
402
  for (auto& bid : block_ids) {
403 404 405 406 407
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size(),
                      platform::errors::InvalidArgument(
                          "Input block id = %zu, but it should be less than "
                          "program.size() which is %zu",
                          static_cast<size_t>(bid), program.Size()));
S
sneaxiy 已提交
408
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
409 410 411 412
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
413 414 415 416 417
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
418
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
419
    ++idx;
T
typhoonzero 已提交
420 421 422 423
  }
  return result;
}

424 425 426 427 428
void Executor::RunPartialPreparedContext(ExecutorPrepareContext* ctx,
                                         Scope* scope, int64_t start_op_index,
                                         int64_t end_op_index,
                                         bool create_local_scope,
                                         bool create_vars, bool keep_kids) {
429
  platform::RecordBlock b(kProgramId);
430 431
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope shouldn't be null"));
Y
Yu Yang 已提交
432 433 434 435
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
436 437
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
438
  }
Y
Yu Yang 已提交
439

S
sneaxiy 已提交
440
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
441
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
442
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
443
    if (platform::is_gpu_place(place_)) {
444
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
fix bug  
sneaxiy 已提交
445
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
446
        gc.reset(new UnsafeFastGPUGarbageCollector(
447
            BOOST_GET_CONST(platform::CUDAPlace, place_), max_memory_size));
S
fix bug  
sneaxiy 已提交
448
      } else {
S
sneaxiy 已提交
449
        gc.reset(new DefaultStreamGarbageCollector(
450
            BOOST_GET_CONST(platform::CUDAPlace, place_), max_memory_size));
S
fix bug  
sneaxiy 已提交
451
      }
452 453 454
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No GPU gc found in CPU/XPU paddle"));
S
sneaxiy 已提交
455
#endif
456
    } else if (platform::is_cpu_place(place_)) {
457 458
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place_), max_memory_size));
459 460 461 462 463 464 465
    } else if (platform::is_xpu_place(place_)) {
#ifdef PADDLE_WITH_XPU
      gc.reset(new XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place_), max_memory_size));
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("No XPU gc found in CPU/GPU paddle"));
466 467 468
#endif
    } else if (platform::is_npu_place(place_)) {
#ifdef PADDLE_WITH_ASCEND_CL
469 470 471 472 473 474 475 476 477 478 479 480 481
      if (IsFastEagerDeletionModeEnabled()) {
        VLOG(4) << "Use unsafe fast gc for NPU.";
        gc.reset(new NPUUnsafeFastGarbageCollector(
            BOOST_GET_CONST(platform::NPUPlace, place_), max_memory_size));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Please set FLAGS_fast_eager_deletion_mode=true to use "
            "GarbageCollector on NPU."));
        // TODO(zhiqiu): fix bugs and enable NPUDefaultStreamGarbageCollector.
        VLOG(4) << "Use default stream gc for NPU.";
        gc.reset(new NPUDefaultStreamGarbageCollector(
            BOOST_GET_CONST(platform::NPUPlace, place_), max_memory_size));
      }
482
#else
483 484
      PADDLE_THROW(
          platform::errors::Unimplemented("No NPU gc found in CPU/NPU paddle"));
S
sneaxiy 已提交
485
#endif
486
    }
S
sneaxiy 已提交
487 488
  }

489 490
  for (int64_t i = start_op_index; i < end_op_index; ++i) {
    auto& op = ctx->ops_[i];
491
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
492
    if (gc) {
S
sneaxiy 已提交
493
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
494
    }
Y
Yu Yang 已提交
495
  }
S
sneaxiy 已提交
496

L
Leo Chen 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  auto callback = [scope, local_scope, keep_kids]() {
    if (local_scope != scope) {
      VLOG(4) << "Delete scope: " << local_scope;
      scope->DeleteScope(local_scope);
    } else {
      if (!keep_kids) {
        VLOG(4) << "Drop kids: " << scope;
        // By default, we should delete all kid scopes after run executor
        // because
        // some operators may create local scope when running, such as while_op.
        // But when while_op also create a local executor to run it's sub block,
        // the sub scopes it created should not be dropped immediately, because
        // while_grad_op will use some variables created during while_op run, so
        // we need to keep the kids and wait for the outer executor to drop
        // them.

        scope->DropKids();
      }
      VLOG(4) << "Keep kids: " << scope;
    }
  };
S
sneaxiy 已提交
518

L
Leo Chen 已提交
519 520 521
  if (gc) {
    VLOG(4) << "Async deleting scope";
    gc->DirectClearCallback(callback);
522
  } else {
L
Leo Chen 已提交
523 524 525
    VLOG(4) << "Sync deleting scope";
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
    callback();
Y
Yu Yang 已提交
526 527 528
  }
}

529 530 531 532 533 534 535 536 537
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
  int64_t start_op_index = 0;
  int64_t end_op_index = ctx->ops_.size();
  RunPartialPreparedContext(ctx, scope, start_op_index, end_op_index,
                            create_local_scope, create_vars, keep_kids);
}

538 539
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
540
    std::map<std::string, const LoDTensor*>* feed_targets,
541
    std::map<std::string, FetchType*>* fetch_targets, bool create_local_scope,
W
Wu Yi 已提交
542 543
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
544 545
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

546 547 548 549 550
  PADDLE_ENFORCE_EQ(
      has_feed_operators(global_block, *feed_targets, feed_holder_name), true,
      platform::errors::PreconditionNotMet(
          "Program in ExecutorPrepareContext should has feed_ops."));
  PADDLE_ENFORCE_EQ(
551
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
552 553
      true, platform::errors::PreconditionNotMet(
                "Program in the prepared context should has fetch_ops."));
554

555 556 557 558
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
559
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
560 561
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
562 563 564
    }
  }

W
Wu Yi 已提交
565
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
566 567 568 569 570

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
571
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
572
      *(*fetch_targets)[fetch_target_name] =
573 574 575 576 577
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

578 579
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
580
  VLOG(3) << "use_mkldnn=True";
581 582 583 584 585 586 587 588
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
589 590 591
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
592 593
#endif
}
Q
qijun 已提交
594 595
}  // namespace framework
}  // namespace paddle