layer_norm_op.cc 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/layer_norm_op.h"
S
sneaxiy 已提交
16
#include <memory>
F
furnace 已提交
17
#include <string>
C
chengduoZH 已提交
18

19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
23 24 25 26 27 28 29 30 31 32 33 34
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
35 36 37 38 39
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "LayerNorm");
C
chengduoZH 已提交
40

C
chengduoZH 已提交
41 42
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
43 44 45 46 47 48 49
    PADDLE_ENFORCE_LT(
        begin_norm_axis, x_dim.size(),
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
            begin_norm_axis, x_dim.size()));
C
chengduoZH 已提交
50 51 52

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
53
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
54
    if (ctx->HasInput("Scale")) {
55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
61 62

      if (ctx->IsRuntime()) {
63 64 65 66 67 68 69 70 71
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Scale")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
72
      }
C
chengduoZH 已提交
73 74
    }
    if (ctx->HasInput("Bias")) {
75 76 77 78 79 80
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
81
      if (ctx->IsRuntime()) {
82 83 84 85 86 87 88 89 90
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Bias")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
91
      }
C
chengduoZH 已提交
92
    }
C
chengduoZH 已提交
93

C
chengduoZH 已提交
94
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
95 96
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
97 98
    ctx->ShareLoD("X", "Y");
  }
99 100 101

 protected:
  framework::OpKernelType GetExpectedKernelType(
F
furnace 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto ln_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      ln_param_type = framework::proto::VarType::FP64;
    }
    if (ctx.HasInput("Scale")) {
      PADDLE_ENFORCE_EQ(ln_param_type, ctx.Input<Tensor>("Scale")->type(),
                        platform::errors::InvalidArgument(
                            "Scale input should be of float type"));
    }
    if (ctx.HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ln_param_type, ctx.Input<Tensor>("Bias")->type(),
                        platform::errors::InvalidArgument(
                            "Bias input should be of float type"));
    }

122 123 124 125 126
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
127
        this->CanMKLDNNBeUsed(ctx)) {
128 129 130 131 132
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

F
furnace 已提交
133 134
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
135
  }
C
chengduoZH 已提交
136 137 138 139
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
140
  void Make() override {
Y
yuyang18 已提交
141
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
142
    AddInput("Scale",
Y
yuyang18 已提交
143
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
144 145 146
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
147
    AddInput("Bias",
Y
yuyang18 已提交
148
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
149 150 151
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
152 153 154
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
155 156 157
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
158
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
159 160
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
161 162 163 164 165
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
166
        });
C
chengduoZH 已提交
167
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
168
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
169
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
170
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
171 172 173
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
174 175 176 177
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
178
        });
179 180 181 182 183 184 185 186 187 188 189 190
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
C
chengduoZH 已提交
191 192

    AddComment(R"DOC(
Y
yuyang18 已提交
193 194 195 196 197 198 199 200
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
201 202 203 204 205 206 207 208 209 210
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
211 212 213 214 215 216
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "LayerNormGrad");
C
chengduoZH 已提交
217 218 219

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
220
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
221 222
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
223 224
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
225 226
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
227
      ctx->SetOutputDim(framework::GradVarName("Bias"),
228
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
229 230 231 232 233 234 235
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
236 237
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::NotFound(
                                     "Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
238 239 240 241 242 243
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
244 245
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
F
furnace 已提交
246 247 248 249 250 251 252

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout, library);
C
chengduoZH 已提交
253 254 255
  }
};

H
hong 已提交
256 257
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
258
 public:
H
hong 已提交
259
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
260 261

 protected:
262
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
263
    op->SetType("layer_norm_grad");
H
hong 已提交
264 265 266 267 268 269
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
270 271
    }

H
hong 已提交
272
    if (this->HasInput("Bias")) {
273
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
274
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
275 276
    }

H
hong 已提交
277 278 279
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
280 281 282
  }
};

283
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInferer,
284 285
                                    "Bias");

C
chengduoZH 已提交
286 287 288 289
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
290
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
H
hong 已提交
291 292
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
293
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp,
294
                  ops::LayerNormGradNoNeedBufferVarInferer);
C
chengduoZH 已提交
295
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
296 297
    layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
298 299
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
300 301
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, double>);