multi_devices_graph_builder.cc 20.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
23
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
26
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
27
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31 32
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
33 34

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
39
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
40
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
41 42 43
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
44
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
45
      strategy_(strategy) {
Y
Yu Yang 已提交
46 47 48 49 50
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
51
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
52 53
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
54
      local_scopes_(local_scopes),
Y
yuyang18 已提交
55
      strategy_(strategy) {
Y
Yu Yang 已提交
56
#endif
Y
Yu Yang 已提交
57 58 59
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
60
  balance_vars_.resize(places_.size(), 0);
Y
Yu Yang 已提交
61 62
}

Y
Yu Yang 已提交
63 64
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
65 66
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
67
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
68 69
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
70

Y
Yu Yang 已提交
71 72 73
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
74 75 76
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
77 78
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
79 80
  }
}
Y
fix pe  
Yancey1989 已提交
81 82 83 84

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
85 86
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
87
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
88 89
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
90
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
104 105 106
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
120 121 122
    return false;
  }

Y
Yu Yang 已提交
123 124 125 126
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
127
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
128
    for (auto &var : opvars) {
Y
Yancey1989 已提交
129 130 131
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
132
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
133
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
134
        return true;
T
typhoonzero 已提交
135 136
      }
    }
Y
Yu Yang 已提交
137
    return false;
T
typhoonzero 已提交
138 139
  };

Y
Yancey1989 已提交
140 141
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
142 143
}

Y
Yancey1989 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

Y
Yu Yang 已提交
164 165
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
166
  for (auto *var : program.Block(0).AllVars()) {
Y
Yancey1989 已提交
167
    all_vars_.emplace(var->Name(), var);
C
fix ci  
chengduoZH 已提交
168
  }
C
chengduoZH 已提交
169

Y
Yu Yang 已提交
170
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
171
  SSAGraph &result = *graph;
C
chengduoZH 已提交
172
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
173 174 175 176 177

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
178

Y
fix pe  
Yancey1989 已提交
179 180 181 182
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
183

C
chengduoZH 已提交
184 185 186
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
187
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
188
  bool is_forwarding = true;
189

Y
Yu Yang 已提交
190
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
191 192 193
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
194
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
195
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
196
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
197
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
198
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
199 200
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
201 202
        CreateScaleLossGradOp(&result);
      }
203 204 205 206
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
207
      is_forwarding = false;
Y
Yu Yang 已提交
208
    } else {
209
      int op_dev_id = GetOpDeviceID(*op);
C
chengduo 已提交
210
      if (op_dev_id != -1) {  // This op only runs on one specific device.
C
chengduoZH 已提交
211 212
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
213
          var_name_on_devices_.emplace(var_name, op_dev_id);
C
chengduoZH 已提交
214
        }
C
chengduo 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
        CreateComputationalOps(&result, *op, places_.size());

        if (!is_forwarding && places_.size() > 1) {
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
          if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
              auto backward_vars =
                  boost::get<std::vector<std::string>>(op->GetNullableAttr(
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
230

C
chengduo 已提交
231
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
232

C
chengduo 已提交
233 234 235 236
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
237

C
chengduo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
                    var_name_on_devices_.emplace(g_name, cur_device_id);
                    bcast_var_name_set[cur_device_id].emplace(p_name);
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
257
              }
C
chengduo 已提交
258
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
259
            }
Y
Yu Yang 已提交
260 261 262 263 264 265
          }
        }
      }
    }
  }

C
chengduoZH 已提交
266 267 268 269 270 271 272
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
273 274
  /*
    Dependency graph has been constructed. However, there are still data
275
    hazards need to be handled.
Y
Yu Yang 已提交
276 277
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
278

Y
Yu Yang 已提交
279 280 281 282 283
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
284
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
285 286
}

Y
Yancey1989 已提交
287 288 289
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
290 291 292
    return true;
  }
  return false;
293 294
}

295 296 297 298 299 300 301 302 303 304 305 306 307
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

C
chengduoZH 已提交
308 309
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
310
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
311 312 313 314 315 316 317
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
318
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
319 320 321 322
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
323 324
    SetCommunicationContext(op_handle, p);
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

C
chengduoZH 已提交
339 340
void MultiDevSSAGraphBuilder::InsertAllReduceOp(SSAGraph *result,
                                                const std::string &og) const {
Y
Yu Yang 已提交
341 342
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
343
      new AllReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
344
#else
345
  result->ops_.emplace_back(new AllReduceOpHandle(local_scopes_, places_));
C
chengduoZH 已提交
346
#endif
Y
Yu Yang 已提交
347 348 349 350
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
351
    SetCommunicationContext(op_handle, p);
Y
Yu Yang 已提交
352
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
353 354
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
355 356
    op_handle->AddInput(prev_grad.get());

357
    auto var = new VarHandle(vars.size(), i, og, p);
Y
Yu Yang 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

375
int MultiDevSSAGraphBuilder::GetOpDeviceID(const OpDesc &op) const {
Y
yuyang18 已提交
376
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
377 378 379
    return -1;
  }

380 381 382 383
  for (auto &varname : op.InputArgumentNames()) {
    int dev_id = GetVarDeviceID(varname);
    if (dev_id != -1) {
      return dev_id;
C
chengduoZH 已提交
384 385
    }
  }
386 387 388 389 390 391
  return -1;
}

int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
  auto got = var_name_on_devices_.find(varname);
  return got == var_name_on_devices_.end() ? -1 : got->second;
C
chengduoZH 已提交
392 393
}

Y
Yu Yang 已提交
394 395 396 397
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
398 399 400
    auto *communication_dev_ctx =
        nccl_ctxs_ ? nccl_ctxs_->DevCtx(places_[i])
                   : platform::DeviceContextPool::Instance().Get(places_[i]);
Y
Yu Yang 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
423 424 425
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
426 427 428
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
429
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
430 431 432
  }
}

C
chengduoZH 已提交
433 434 435
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
436 437 438 439 440 441 442 443 444 445
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
446 447
    SetCommunicationContext(op_handle, p);
    auto &vars = result->vars_[i][og];
C
chengduoZH 已提交
448 449 450 451 452
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
453
  auto var = new VarHandle(vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
454 455 456 457 458
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

459 460
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
Y
fix pe  
Yancey1989 已提交
461 462
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
463
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
464
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
465 466 467
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
468
      op->AddInput(dep_var);
Y
Yancey1989 已提交
469 470 471 472
    }
  }
}

Y
Yancey1989 已提交
473
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
Y
Yancey1989 已提交
474 475
                                                const OpDesc &op) const {
  int op_dev_id = -1;
Y
yi.wu 已提交
476
  if (op.Type() == "split_byref" || op.Type() == "split_selected_rows") {
Y
Yancey1989 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(op.InputArgumentNames());
      for (auto &varname : op.InputArgumentNames()) {
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else if (op.Type() == "concat") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
  } else {
    PADDLE_ENFORCE(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s", op.Type());

  CreateComputationalOp(result, op, op_dev_id);
Y
Yancey1989 已提交
499 500 501 502 503
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

504
// Create RPC related op handles that connects its in ops and out ops.
Y
Yancey1989 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
  int op_dev_id = -1;
  if (op.Type() == "send") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
    // the variable name which contains .block means it was splited by
    // split_byref op
    // so that we can balance the variable blocks to all the pserver instances.
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
        op.InputArgumentNames()[0].find(".block") == std::string::npos) {
      op_dev_id = GetAppropriateDeviceID(op.InputArgumentNames());
      for (auto &varname : op.InputArgumentNames()) {
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
  } else if (op.Type() == "recv") {
    op_dev_id = GetAppropriateDeviceID(op.OutputArgumentNames());
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else {
    // send_barrier and fetch_barrier op can be scheduled on device 0
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
                 op.Type());

  result->ops_.emplace_back(new RPCOpHandle(op, local_scopes_[op_dev_id],
                                            op.Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
535

Y
Yancey1989 已提交
536
  if (op.Type() == "send_barrier") {
537
    ConnectOp(result, result->ops_.back().get(), "send");
Y
Yancey1989 已提交
538
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
539
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
540
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
541
    ConnectOp(result, result->ops_.back().get(), "recv");
542
  } else if (op.Type() == "send") {
Y
Yancey1989 已提交
543 544 545
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
546
        "rpc op should be in ["
547
        "send, send_barrier. recv, fetch_barrier]");
Y
Yancey1989 已提交
548 549
  }

Y
Yancey1989 已提交
550
  CreateOpHandleIOs(result, op, op_dev_id);
Y
Yu Yang 已提交
551 552 553
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
554 555
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
556 557 558
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
559
}
Y
Yu Yang 已提交
560 561 562
}  // namespace details
}  // namespace framework
}  // namespace paddle