multi_devices_graph_builder.cc 17.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16 17
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
18
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
20
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
22
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Fix bug  
yuyang18 已提交
23
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
25 26 27 28

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31 32
#include <string>
#include <vector>

Y
Yu Yang 已提交
33 34 35
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
36 37

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
38 39 40 41
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
42
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
43
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
44 45 46
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
47
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
48
      strategy_(strategy) {
Y
Yu Yang 已提交
49 50 51 52 53
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
54
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
55 56
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
57
      local_scopes_(local_scopes),
Y
yuyang18 已提交
58
      strategy_(strategy) {
Y
Yu Yang 已提交
59
#endif
Y
Yu Yang 已提交
60 61 62 63 64
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
65 66
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
67 68
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
69
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
70 71
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
72

Y
Yu Yang 已提交
73 74 75
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
76 77 78
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
79 80
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
81 82
  }
}
Y
fix pe  
Yancey1989 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send_vars" || op->Type() == "send") {
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "recv" || op->Type() == "send") {
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
116 117 118
    return false;
  }

Y
Yu Yang 已提交
119 120 121 122
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
123
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
124 125
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
126
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
127
        return true;
T
typhoonzero 已提交
128 129
      }
    }
Y
Yu Yang 已提交
130
    return false;
T
typhoonzero 已提交
131 132
  };

Y
fix pe  
Yancey1989 已提交
133 134 135
  if (op.Type() == "split" || op.Type() == "split_byref" ||
      op.Type() == "split_selected_rows") {
    return checker(op.OutputArgumentNames(), send_vars);
T
typhoonzero 已提交
136
  } else if (op.Type() == "concat") {
Y
fix pe  
Yancey1989 已提交
137
    return checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
138
  }
Y
fix pe  
Yancey1989 已提交
139

T
typhoonzero 已提交
140 141 142
  return false;
}

Y
Yancey1989 已提交
143 144 145 146 147 148 149 150 151
bool MultiDevSSAGraphBuilder::IsRPCOp(const OpDesc &op) const {
  for (auto &name : op.OutputNames()) {
    if (name == "RPCClient") {
      return true;
    }
  }
  return false;
}

Y
Yu Yang 已提交
152 153
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
154 155 156 157
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
158

Y
Yu Yang 已提交
159
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
160
  SSAGraph &result = *graph;
C
chengduoZH 已提交
161
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
162 163 164 165 166

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
167

Y
fix pe  
Yancey1989 已提交
168 169 170 171
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
172

C
chengduoZH 已提交
173 174 175 176 177 178
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
179 180
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
181 182
    if (IsRPCOp(*op)) {
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
183
      // always use the first device
Y
Yancey1989 已提交
184
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
185
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
186
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
187
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
188
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
189 190
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
191 192
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
193
      is_forwarding = false;
Y
Yu Yang 已提交
194
    } else {
C
chengduoZH 已提交
195 196 197 198 199 200 201 202 203
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
204
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
205
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
206
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
207 208 209
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
210 211 212 213 214 215 216
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
217
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
218 219
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
220 221
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  cur_device_id = (cur_device_id + 1) % places_.size();
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
                  if (IsSparseGradient(var_types, g_name)) {
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
238
            }
Y
yuyang18 已提交
239
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
240 241 242 243 244 245
          }
        }
      }
    }
  }

C
chengduoZH 已提交
246 247 248 249 250 251 252
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
253 254 255 256 257
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
258

Y
Yu Yang 已提交
259 260 261 262 263
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
264
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
265 266
    std::ofstream fout("/tmp/graph.dot");
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
267 268
  }

Y
Yu Yang 已提交
269
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
270 271
}

C
fix ci  
chengduoZH 已提交
272 273 274 275 276 277 278 279
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
280 281
}

C
chengduoZH 已提交
282 283
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
284
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
285 286 287 288 289 290 291
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
292
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
293 294 295
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
296
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
316 317 318 319 320 321 322 323 324 325
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
326 327
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
351 352 353
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
354
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
398 399 400
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
401 402 403
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
404
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
405 406 407
  }
}

C
chengduoZH 已提交
408 409 410
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
438 439
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
440
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
441
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
442 443 444
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
445
      op->AddInput(dep_var);
Y
Yancey1989 已提交
446 447 448 449
    }
  }
}

Y
Yancey1989 已提交
450 451 452 453 454 455 456 457
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
458 459
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
460 461
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
462
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
463

Y
Yancey1989 已提交
464
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
465
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
466
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
467
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
468
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
469
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
470 471 472 473 474 475 476 477
  } else if (op.Type() == "send" || op.Type() == "send_vars") {
    // do nothing
  } else {
    PADDLE_THROW(
        "rpc op should be in [send,"
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yu Yang 已提交
478 479 480
  // FIXME(wuyi): send op always copy from GPU 0
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
481
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
482 483 484
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
485 486
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
487 488 489
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
490
}
Y
Yu Yang 已提交
491 492 493
}  // namespace details
}  // namespace framework
}  // namespace paddle