test_trt_convert_bilinear_interp_v2.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
from functools import partial
17
from typing import Any, Dict, List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30 31 32


class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        inputs = program_config.inputs
        weights = program_config.weights
        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]
33 34 35 36
        ver = paddle_infer.get_trt_compile_version()
        # here is consistent with op_teller.cc
        if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7100:
            return False
37 38 39 40 41 42 43
        return True

    def sample_program_configs(self):
        def generate_input1(attrs: List[Dict[str, Any]]):
            return np.ones([1, 3, 64, 64]).astype(np.float32)

        def generate_input2(attrs: List[Dict[str, Any]]):
44 45 46
            return np.random.uniform(low=0.5, high=6.0, size=(2)).astype(
                "float32"
            )
47 48

        for data_layout in ["NCHW", "NHWC"]:
49
            for scale_y in [2.0, 1.0]:
Y
Yuanle Liu 已提交
50
                for scale_x in [2.0]:
51
                    scale = [scale_y, scale_x]
Y
Yuanle Liu 已提交
52 53
                    for out_h in [32, 128]:
                        for out_w in [64]:
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                            dics = [
                                {
                                    "data_layout": data_layout,
                                    "interp_method": "bilinear",
                                    "align_corners": False,
                                    "align_mode": 0,
                                    "scale": scale,
                                    "out_h": out_h,
                                    "out_w": out_w,
                                }
                            ]

                            ops_config = [
                                {
                                    "op_type": "bilinear_interp_v2",
                                    "op_inputs": {
                                        "X": ["input_data"],
                                        "Scale": ["input_scale"],
                                    },
                                    "op_outputs": {
                                        "Out": [
                                            "bilinear_interp_v2_output_data"
                                        ]
                                    },
                                    "op_attrs": dics[0],
                                }
                            ]
81 82 83 84 85
                            ops = self.generate_op_config(ops_config)

                            program_config = ProgramConfig(
                                ops=ops,
                                weights={
86 87 88
                                    "input_scale": TensorConfig(
                                        data_gen=partial(generate_input2, dics)
                                    )
89 90
                                },
                                inputs={
91 92 93
                                    "input_data": TensorConfig(
                                        data_gen=partial(generate_input1, dics)
                                    )
94
                                },
95 96
                                outputs=["bilinear_interp_v2_output_data"],
                            )
97 98 99 100

                            yield program_config

    def sample_predictor_configs(
101 102
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        def generate_dynamic_shape(attrs):
            self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 64, 64]}
            self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
            self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            return 1, 2

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
124 125
            attrs, False
        ), 1e-5
126 127
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
128 129
            attrs, False
        ), 1e-2
130 131 132 133 134

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
135 136
            attrs, True
        ), 1e-5
137 138
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
139 140
            attrs, True
        ), 1e-2
141 142 143 144 145 146 147

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()