elementwise_grad_kernel_impl.h 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/complex.h"
18
#include "paddle/phi/common/float16.h"
19
#include "paddle/phi/core/dense_tensor.h"
20
#include "paddle/phi/core/tensor_utils.h"
21
#include "paddle/phi/kernels/full_kernel.h"
22
#include "paddle/phi/kernels/funcs/broadcast_function.h"
23
#include "paddle/phi/kernels/funcs/eigen/common.h"
24
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
25

26
namespace phi {
27 28 29 30 31 32 33 34 35 36

template <typename T, typename Context, typename GradFunc>
void AddGradImpl(const Context& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const DenseTensor& out_grad,
                 int axis,
                 DenseTensor* x_grad,
                 DenseTensor* y_grad,
                 GradFunc grad_func) {
37
  phi::funcs::ElementwiseGradPreProcess(out_grad, x_grad);
38 39 40 41 42 43
  auto* out = &out_grad;
  // Special case when y_grad is not needed and x_grad doesn't reduce
  if (x_grad != nullptr && y_grad == nullptr &&
      x_grad->dims() == out_grad.dims()) {
    VLOG(4) << "Special case when y_grad is not needed and x_grad doesn't "
               "reduce";
44
    phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, x_grad);
45 46 47 48
  } else if (x_grad == nullptr && y_grad != nullptr &&
             y_grad->dims() == out_grad.dims()) {
    VLOG(4) << "Special case when x_grad is not needed and y_grad doesn't "
               "reduce";
49
    phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, y_grad);
50 51 52 53 54
  } else {
    grad_func(dev_ctx, x, y, *out, out_grad, x_grad, y_grad, axis);
  }
}

55
template <typename T, typename Context>
56 57
void AddDoubleGradImpl(const Context& dev_ctx,
                       const DenseTensor& y,
58 59
                       const paddle::optional<DenseTensor>& ddx,
                       const paddle::optional<DenseTensor>& ddy,
60 61
                       const DenseTensor& dout,
                       int axis,
62
                       DenseTensor* ddout) {
63 64 65 66 67 68 69 70
  // ddOut = ddx + ddy
  if (ddout) {
    DenseTensor ddx_safe, ddy_safe;
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, dout, ddx.get_ptr(), &ddx_safe);
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, y, ddy.get_ptr(), &ddy_safe);

71
    dev_ctx.template Alloc<T>(ddout);
72 73 74
    auto ddx_dims = ddx_safe.dims();
    auto ddy_dims = ddy_safe.dims();
    if (ddx_dims.size() >= ddy_dims.size()) {
75
      funcs::ElementwiseCompute<funcs::AddFunctor<T>, T>(
76 77
          dev_ctx, ddx_safe, ddy_safe, axis, funcs::AddFunctor<T>(), ddout);
    } else {
78 79 80 81 82 83 84
      funcs::ElementwiseCompute<funcs::InverseAddFunctor<T>, T>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          axis,
          funcs::InverseAddFunctor<T>(),
          ddout);
85 86 87 88
    }
  }
}

89
template <typename T, typename Context>
90 91
void SubtractDoubleGradImpl(const Context& dev_ctx,
                            const DenseTensor& y,
92 93
                            const paddle::optional<DenseTensor>& ddx,
                            const paddle::optional<DenseTensor>& ddy,
94 95
                            const DenseTensor& dout,
                            int axis,
96
                            DenseTensor* ddout) {
97 98 99 100 101 102 103 104
  // DDOut = ddx - ddy
  if (ddout) {
    DenseTensor ddx_safe, ddy_safe;
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, dout, ddx.get_ptr(), &ddx_safe);
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, y, ddy.get_ptr(), &ddy_safe);

105
    dev_ctx.template Alloc<T>(ddout);
106
    funcs::ElementwiseCompute<funcs::SubtractFunctor<T>, T>(
107 108 109 110
        dev_ctx, ddx_safe, ddy_safe, axis, funcs::SubtractFunctor<T>(), ddout);
  }
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/*
******************************
    Divide Grad
******************************
*/

template <typename T>
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
};

template <typename T>
struct DivGradDX<phi::dtype::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> y_conj(y.real, -y.imag);
    return dout / y_conj;
  }
};

template <typename T>
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return -dout * out / y;
  }
};

template <typename T>
142
struct DivGradDY<phi::dtype::complex<T>> {
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> out_div_y_conj((out / y).real, -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

template <typename T, typename Context>
void DivideDoubleGradKernel(const Context& dev_ctx,
                            const DenseTensor& y,
                            const DenseTensor& out,
                            const DenseTensor& dx,
165 166
                            const paddle::optional<DenseTensor>& ddx,
                            const paddle::optional<DenseTensor>& ddy,
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                            int axis,
                            DenseTensor* dy,
                            DenseTensor* dout,
                            DenseTensor* ddout) {
  if (dy) {
    dy->Resize(y.dims());
    dev_ctx.template Alloc<T>(dy);
  }
  if (dout) {
    dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }
  // ddX_safe == null ? 0 : ddX
  // ddY_safe == null ? 0 : ddY
  DenseTensor ddX_safe, ddY_safe;
  phi::funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, dx, ddx.get_ptr(), &ddX_safe);
  phi::funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, y, ddy.get_ptr(), &ddY_safe);

  // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
  // dY = Out * dX * ddY / Y - dX * ddX / Y
  // dOut = - dX * ddY
  // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
  // inplace ddx
  DenseTensor tmp;
  if (dout) {
    tmp = *dout;
  } else {
    tmp.Resize(out.dims());
    dev_ctx.template Alloc<T>(&tmp);
  }
  if (dy) {
    // dX_div_Y = dX / Y;
    DenseTensor dX_div_Y = tmp;
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::DivideFunctor<T>,
                                      funcs::InverseDivideFunctor<T>>(
        dev_ctx, dx, y, &dX_div_Y, axis);

    // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
    // first output tensor is nullptr, the branch to calculate first
    // output tensor will not be activated, DivGradDx function will not
    // be called and can be ignored, the first branch has little effect
    // on running speed.

    // dY = Out * dX * ddY / Y - dX * ddX / Y
    phi::funcs::ElemwiseGradCompute<Context, T, DivGradDX<T>, DivDoubleDY<T>>(
        dev_ctx,
        ddX_safe,
        ddY_safe,
        out,
        dX_div_Y,
        axis,
        nullptr,
        dy,
        DivGradDX<T>(),
        DivDoubleDY<T>());
  }

  if (ddout) {
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, out, ddY_safe, &tmp, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::SubtractFunctor<T>,
                                      funcs::InverseSubtractFunctor<T>>(
        dev_ctx, ddX_safe, tmp, &tmp, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::DivideFunctor<T>,
                                      funcs::InverseDivideFunctor<T>>(
        dev_ctx, tmp, y, ddout, axis);
  }

  if (dout) {
    // dOut = - dX * ddY
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, dx, ddY_safe, dout, axis);
    auto& place = *dev_ctx.eigen_device();
    auto dout_result = phi::EigenVector<T>::Flatten(*dout);
    dout_result.device(place) = static_cast<T>(-1) * dout_result;
  }
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
template <typename T, typename Context>
void ElementwiseFMaxGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& y,
                               const DenseTensor& out_grad,
                               int axis,
                               DenseTensor* x_grad,
                               DenseTensor* y_grad) {
  funcs::ElementwiseGradPreProcess(out_grad, x_grad);

  auto out = out_grad;  // Fake out, not used
  auto x_dim = x.dims();
  auto y_dim = y.dims();
  if (x.dims() == y.dims()) {
    funcs::ElemwiseGradComputeNoBroadcast<Context,
                                          T,
                                          funcs::FMaxGradDx<T>,
                                          funcs::FMaxGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMaxGradDx<T>(),
        funcs::FMaxGradDy<T>());
  } else {
    funcs::ElemwiseGradComputeWithBroadcast<T,
                                            funcs::FMaxGradDx<T>,
                                            funcs::FMaxGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMaxGradDx<T>(),
        funcs::FMaxGradDy<T>());
  }
}

template <typename T, typename Context>
void ElementwiseFMinGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& y,
                               const DenseTensor& out_grad,
                               DenseTensor* x_grad,
                               DenseTensor* y_grad) {
  funcs::ElementwiseGradPreProcess(out_grad, x_grad);
  auto out = out_grad;  // Fake out, not used
  auto x_dim = x.dims();
  auto y_dim = y.dims();
Z
zyfncg 已提交
323
  int axis = -1;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  if (x.dims() == y.dims()) {
    funcs::ElemwiseGradComputeNoBroadcast<Context,
                                          T,
                                          funcs::FMinGradDx<T>,
                                          funcs::FMinGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMinGradDx<T>(),
        funcs::FMinGradDy<T>());
  } else {
    funcs::ElemwiseGradComputeWithBroadcast<T,
                                            funcs::FMinGradDx<T>,
                                            funcs::FMinGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMinGradDx<T>(),
        funcs::FMinGradDy<T>());
  }
}
359

Y
YuanRisheng 已提交
360 361 362 363 364
template <typename T>
struct MulGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
};

365 366 367 368 369 370 371 372
// avoid [-Wint-in-bool-context] warning
template <>
struct MulGradDX<bool> {
  HOSTDEVICE bool operator()(bool x, bool y, bool out, bool dout) const {
    return dout && y;
  }
};

Y
YuanRisheng 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
template <typename T>
struct MulGradDX<phi::dtype::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> y_conj(y.real, -y.imag);
    return dout * y_conj;
  }
};

/*
******************************
    Multiply Grad
******************************
*/

template <typename T>
struct MulGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
};

396 397 398 399 400 401 402 403
// avoid [-Wint-in-bool-context] warning
template <>
struct MulGradDY<bool> {
  HOSTDEVICE bool operator()(bool x, bool y, bool out, bool dout) const {
    return dout && x;
  }
};

Y
YuanRisheng 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
template <typename T>
struct MulGradDY<phi::dtype::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> x_conj(x.real, -x.imag);
    return dout * x_conj;
  }
};

template <typename T, typename Context>
void MultiplyDoubleGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              const DenseTensor& dout,
421 422
                              const paddle::optional<DenseTensor>& ddx,
                              const paddle::optional<DenseTensor>& ddy,
Y
YuanRisheng 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
                              int axis,
                              DenseTensor* dx,
                              DenseTensor* dy,
                              DenseTensor* ddout) {
  if (ddout) dev_ctx.template Alloc<T>(ddout);

  DenseTensor ddx_safe, ddy_safe;
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, x, ddx.get_ptr(), &ddx_safe);
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, y, ddy.get_ptr(), &ddy_safe);

  // dx = dout * ddy
  // dy = dout * ddx
  // ddout = ddx * y + x * ddy
  // change computation sequence to save memory, so ddout can inplace ddx and
  // dx can be used as 'tmp' tensor
  // (1) dx = x * ddy
  // (2) dy = dout * ddx
  // (3) ddout = ddx * y
  // (4) ddout = ddout + dx
  // (5) dx = dout * ddy
  if (ddout) {
    auto& place = *dev_ctx.eigen_device();
447 448 449 450 451 452 453 454
    // size(ddout) > size(ddx) or we don't have ddx, ddout can't use memory of
    // ddx using inplace

    bool without_ddx = (ddx.get_ptr() == nullptr);
    if (!without_ddx) {
      without_ddx = (ddout->numel() > ddx.get_ptr()->numel());
    }
    if (without_ddx) {
Y
YuanRisheng 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
      phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          dout,
          dout,
          axis,
          dx,
          dy,
          MulGradDX<T>(),
          MulGradDY<T>());

      DenseTensor ddout_tmp;
      ddout_tmp.Resize(ddout->dims());
      dev_ctx.template Alloc<T>(&ddout_tmp);

      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, y, ddx_safe, ddout, axis);
476

Y
YuanRisheng 已提交
477 478 479 480 481 482 483 484 485 486 487
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddy_safe, x, &ddout_tmp, axis);

      auto ddout_t = phi::EigenVector<T>::Flatten(*ddout);
      auto ddout_tmp_t = phi::EigenVector<T>::Flatten(ddout_tmp);
      ddout_t.device(place) = ddout_t + ddout_tmp_t;
    } else {
      // use dx to save memory, other than alloc tmp tensor
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
      if (dx) {
        DenseTensor* ddout_tmp = dx;
        funcs::DefaultElementwiseOperator<Context,
                                          T,
                                          funcs::MultiplyFunctor<T>,
                                          funcs::InverseMultiplyFunctor<T>>(
            dev_ctx, x, ddy_safe, ddout_tmp, axis);

        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
            dev_ctx,
            ddx_safe,
            ddy_safe,
            dout,
            dout,
            axis,
            nullptr,
            dy,
            MulGradDX<T>(),
            MulGradDY<T>());

        funcs::DefaultElementwiseOperator<Context,
                                          T,
                                          funcs::MultiplyFunctor<T>,
                                          funcs::InverseMultiplyFunctor<T>>(
            dev_ctx, ddx_safe, y, ddout, axis);
Y
YuanRisheng 已提交
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        auto ddout_t = phi::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = phi::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;

        funcs::DefaultElementwiseOperator<Context,
                                          T,
                                          funcs::MultiplyFunctor<T>,
                                          funcs::InverseMultiplyFunctor<T>>(
            dev_ctx, dout, ddy_safe, dx, axis);

      } else {
        DenseTensor tmp_a(ddout->dtype());
        tmp_a.Resize(ddout->dims());

        dev_ctx.template Alloc<T>(&tmp_a);

        funcs::DefaultElementwiseOperator<Context,
                                          T,
                                          funcs::MultiplyFunctor<T>,
                                          funcs::InverseMultiplyFunctor<T>>(
            dev_ctx, x, ddy_safe, &tmp_a, axis);

        auto ddout_t1 = phi::EigenVector<T>::Flatten(tmp_a);

        funcs::DefaultElementwiseOperator<Context,
                                          T,
                                          funcs::MultiplyFunctor<T>,
                                          funcs::InverseMultiplyFunctor<T>>(
            dev_ctx, ddx_safe, y, ddout, axis);

        auto ddout_t2 = phi::EigenVector<T>::Flatten(*ddout);
        ddout_t2.device(place) = ddout_t2 + ddout_t1;
      }
Y
YuanRisheng 已提交
552
    }
553 554 555 556 557 558 559 560 561 562 563 564 565 566
  } else {
    if (dx && dy) {
      phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          dout,
          dout,
          axis,
          dx,
          dy,
          MulGradDX<T>(),
          MulGradDY<T>());
    }
Y
YuanRisheng 已提交
567 568 569 570 571 572 573 574
  }
}

template <typename T, typename Context>
void MultiplyTripleGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              const DenseTensor& dout,
575 576
                              const paddle::optional<DenseTensor>& ddx,
                              const paddle::optional<DenseTensor>& ddy,
577 578
                              const paddle::optional<DenseTensor>& d_dx,
                              const paddle::optional<DenseTensor>& d_dy,
579
                              const paddle::optional<DenseTensor>& d_ddout,
Y
YuanRisheng 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
                              int axis,
                              DenseTensor* d_x,
                              DenseTensor* d_y,
                              DenseTensor* d_dout,
                              DenseTensor* d_ddx,
                              DenseTensor* d_ddy) {
  if (d_x) {
    d_x->Resize(x.dims());
    dev_ctx.template Alloc<T>(d_x);
  }
  if (d_y) {
    d_y->Resize(y.dims());
    dev_ctx.template Alloc<T>(d_y);
  }
  if (d_dout) {
    d_dout->Resize(dout.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_ddx) {
    d_ddx->Resize(x.dims());
    dev_ctx.template Alloc<T>(d_ddx);
  }
  if (d_ddy) {
    d_ddy->Resize(y.dims());
    dev_ctx.template Alloc<T>(d_ddy);
  }

  auto& place = *dev_ctx.eigen_device();

  DenseTensor ddx_safe, ddy_safe;
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, x, ddx.get_ptr(), &ddx_safe);
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, y, ddy.get_ptr(), &ddy_safe);

  if (d_ddout.get_ptr()) {
    if (d_x) {
      // d_x = ddy * d_ddout
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddy_safe, *(d_ddout.get_ptr()), d_x, axis);
    }
    if (d_y) {
      // d_y = ddx * d_ddout
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddx_safe, *(d_ddout.get_ptr()), d_y, axis);
    }
632 633 634 635 636 637 638
  } else {
    if (d_x) {
      FullLikeKernel<T, Context>(dev_ctx, x, Scalar(0.0), x.dtype(), d_x);
    }
    if (d_y) {
      FullLikeKernel<T, Context>(dev_ctx, y, Scalar(0.0), y.dtype(), d_y);
    }
Y
YuanRisheng 已提交
639 640 641 642 643 644 645 646
  }

  if (d_dout) {
    // get d_dout
    // d_dout = ddy * d_dx + d_dy * ddx
    DenseTensor d_dout_tmp;
    d_dout_tmp.Resize(dout.dims());
    dev_ctx.template Alloc<T>(&d_dout_tmp);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

    if (d_dy && d_dx) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, d_dy.get(), ddx_safe, d_dout, axis);

      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddy_safe, d_dx.get(), &d_dout_tmp, axis);

      auto d_dout_t = phi::EigenVector<T>::Flatten(*d_dout);
      auto d_dout_tmp_t = phi::EigenVector<T>::Flatten(d_dout_tmp);
      d_dout_t.device(place) = d_dout_t + d_dout_tmp_t;
    } else if (d_dy && !d_dx) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, d_dy.get(), ddx_safe, d_dout, axis);
      auto d_dout_t = phi::EigenVector<T>::Flatten(*d_dout);
      d_dout_t.device(place) = d_dout_t;
    } else if (!d_dy && d_dx) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddy_safe, d_dx.get(), d_dout, axis);

      auto d_dout_t = phi::EigenVector<T>::Flatten(*d_dout);
      d_dout_t.device(place) = d_dout_t;
    } else {
      FullLikeKernel<T, Context>(
          dev_ctx, dout, Scalar(0.0), dout.dtype(), d_dout);
    }
Y
YuanRisheng 已提交
685 686
  }

687
  if (d_ddx && ddx) {
Y
YuanRisheng 已提交
688 689 690 691 692
    // get d_ddx
    // d_ddx = dout * d_dy + y * d_ddout
    DenseTensor d_ddx_tmp;
    d_ddx_tmp.Resize(ddx->dims());
    dev_ctx.template Alloc<T>(&d_ddx_tmp);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    if (d_dy && d_ddout) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, dout, d_dy.get(), d_ddx, axis);

      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, y, *(d_ddout.get_ptr()), &d_ddx_tmp, axis);

      auto d_ddx_t = phi::EigenVector<T>::Flatten(*d_ddx);
      auto d_ddx_tmp_t = phi::EigenVector<T>::Flatten(d_ddx_tmp);
      d_ddx_t.device(place) = d_ddx_t + d_ddx_tmp_t;
    } else if (d_dy && !d_ddout) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, dout, d_dy.get(), d_ddx, axis);

      auto d_ddx_t = phi::EigenVector<T>::Flatten(*d_ddx);
      d_ddx_t.device(place) = d_ddx_t;
    } else if (!d_dy && d_ddout) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, y, *(d_ddout.get_ptr()), d_ddx, axis);

      auto d_ddx_t = phi::EigenVector<T>::Flatten(*d_ddx);
      d_ddx_t.device(place) = d_ddx_t;
    } else {
      FullLikeKernel<T, Context>(dev_ctx, x, Scalar(0.0), x.dtype(), d_ddx);
    }
Y
YuanRisheng 已提交
730 731
  }

732
  if (d_ddy && ddy) {
Y
YuanRisheng 已提交
733 734 735 736 737
    // get d_ddy
    // d_ddy = dout * d_dx + x * d_ddout
    DenseTensor d_ddy_tmp;
    d_ddy_tmp.Resize(ddy->dims());
    dev_ctx.template Alloc<T>(&d_ddy_tmp);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

    if (d_dx && d_ddout) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, dout, d_dx.get(), d_ddy, axis);

      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, x, *(d_ddout.get_ptr()), &d_ddy_tmp, axis);

      auto d_ddy_t = phi::EigenVector<T>::Flatten(*d_ddy);
      auto d_ddy_tmp_t = phi::EigenVector<T>::Flatten(d_ddy_tmp);
      d_ddy_t.device(place) = d_ddy_t + d_ddy_tmp_t;
    } else if (d_dx && !d_ddout) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, dout, d_dx.get(), d_ddy, axis);

      auto d_ddy_t = phi::EigenVector<T>::Flatten(*d_ddy);
      d_ddy_t.device(place) = d_ddy_t;
    } else if (!d_dx && d_ddout) {
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, x, *(d_ddout.get_ptr()), d_ddy, axis);

      auto d_ddy_t = phi::EigenVector<T>::Flatten(*d_ddy);
      d_ddy_t.device(place) = d_ddy_t;
    } else {
      FullLikeKernel<T, Context>(dev_ctx, y, Scalar(0.0), y.dtype(), d_ddy);
    }
Y
YuanRisheng 已提交
776 777 778
  }
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
******************************
    Maximum Grad
******************************
*/

template <typename T>
struct MaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x > y);
  }
};

template <typename T>
struct MaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x <= y);
  }
};

/*
******************************
    Minimum Grad
******************************
*/
template <typename T>
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x < y);
  }
};

template <typename T>
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x >= y);
  }
};
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
template <typename T>
struct HeavisideGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(0);
  }
};

template <typename T>
struct HeavisideGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x == static_cast<T>(0));
  }
};

template <typename T, typename Context>
833 834 835 836 837 838
void HeavisideGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& y,
                         const DenseTensor& dout,
                         DenseTensor* dx,
                         DenseTensor* dy) {
839 840 841 842 843 844 845 846
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::
      ElemwiseGradCompute<Context, T, HeavisideGradDx<T>, HeavisideGradDy<T>>(
          dev_ctx,
          x,
          y,
          dout,
          dout,
847
          -1,
848 849 850 851 852 853
          dx,
          dy,
          HeavisideGradDx<T>(),
          HeavisideGradDy<T>());
}

854 855 856 857 858 859 860 861 862 863 864 865 866
template <typename T>
struct PowGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * y *
             std::pow(static_cast<double>(x), static_cast<double>(y - 1));
    }
#endif
    return dout * y * std::pow(x, y - 1);
  }
};

867 868 869 870 871 872 873 874 875 876 877 878 879 880
template <>
struct PowGradDX<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    float tmp_y = static_cast<float>(y);
    float tmp_dout = static_cast<float>(dout);
    float tmp_x = static_cast<float>(x);
    float result = tmp_dout * tmp_y * std::pow(tmp_x, tmp_y - 1.0f);
    return static_cast<dtype::float16>(result);
  }
};

881 882 883 884 885 886 887 888 889 890 891 892 893
template <typename T, typename Enable = void>
struct PowGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * std::log(static_cast<double>(x)) *
             std::pow(static_cast<double>(x), static_cast<double>(y));
    }
#endif
    return dout * std::log(x) * std::pow(x, y);
  }
};

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
template <>
struct PowGradDY<dtype::float16, void> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    float tmp_y = static_cast<float>(y);
    float tmp_dout = static_cast<float>(dout);
    float tmp_x = static_cast<float>(x);
    float tmp_pow = std::pow(tmp_x, tmp_y);
    float result = tmp_pow * tmp_dout * std::log(tmp_x);
    return static_cast<dtype::float16>(result);
  }
};

909 910 911 912 913 914 915 916 917 918 919 920 921
template <typename T, typename Context>
void ElementwisePowGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              const DenseTensor& dout,
                              int axis,
                              DenseTensor* dx,
                              DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, PowGradDX<T>, PowGradDY<T>>(
      dev_ctx, x, y, dout, dout, axis, dx, dy, PowGradDX<T>(), PowGradDY<T>());
}

922
}  // namespace phi