io.py 40.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
import pickle
import warnings
21
import sys
W
WeiXin 已提交
22
import numpy as np
T
tianshuo78520a 已提交
23
import copyreg
24 25 26 27 28
import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
29 30
from paddle.fluid.io import _unpack_saved_dict, _pack_loaded_dict, _pickle_loads_mac
from paddle.fluid.io import _legacy_save as _legacy_static_save
31
from paddle.fluid.io import _open_file_buffer, _is_file_path, _is_memory_buffer
32

J
Jiabin Yang 已提交
33
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer, _non_static_mode, ParamBase, EagerParamBase, _current_expected_place, Program
34 35 36
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
37 38 39 40
try:
    from collections.abc import Iterable
except:
    from collections import Iterable
41

42 43
__all__ = []

44 45 46 47 48

def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
49
        if isinstance(value, (Variable, core.VarBase, core.eager.Tensor)):
S
Steffy-zxf 已提交
50 51 52
            if value.type == core.VarDesc.VarType.VOCAB:
                save_dict[key] = value.value().get_map_tensor()
            else:
B
Baibaifan 已提交
53 54 55 56
                if not value.value().get_tensor()._is_initialized():
                    raise ValueError(
                        "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model."
                    )
S
Steffy-zxf 已提交
57
                save_dict[key] = value.numpy()
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
73
            model_path, programs, config.params_filename, append_suffix=False)
74 75 76 77 78 79

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

80 81 82
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
                    'structured_name', None)
                assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                structured_para_dict[structured_name] = load_param_dict[
                    var_name]
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
99
    # Try to load all the files in the directory in VarBase format,
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#       - paddle.fluid.save_dygraph
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
160
        # is exist, users may want use `paddle.load` load the result of
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
            error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
                "please specify the full file name, not just the file name prefix. For " \
                "example, it should be written as `paddle.load('model.pdparams')` instead of " \
                "`paddle.load('model')`."
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
194 195 196
    supported_configs = [
        'model_filename', 'params_filename', 'keep_name_table', 'return_numpy'
    ]
197 198 199 200 201 202 203 204 205 206 207 208 209

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
210
    inner_config.return_numpy = configs.get('return_numpy', False)
211 212 213 214

    return inner_config


215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
def _parse_save_config(configs):
    supported_configs = ['use_binary_format', 'pickle_protocol']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.save` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.use_binary_format = configs.get('use_binary_format', False)
    inner_config.pickle_protocol = configs.get('pickle_protocol', None)

    return inner_config


def _pickle_save(obj, f, protocol):
    # TODO(weixin):add support for BytesIO.
    if not isinstance(protocol, int):
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
            type(protocol)))

    if protocol < 2 or protocol > 4:
240 241 242
        raise ValueError(
            "Expected 1<'protocol'<5, but received protocol={}".format(
                protocol))
243

244
    def reduce_varbase(self):
245 246 247 248 249 250 251 252 253 254
        data = self.numpy()
        name = self.name

        return (tuple, ((name, data), ))

    def reduce_LoDTensor(self):
        data = np.array(self)

        return (eval, ('data', {'data': data}))

255
    def reduce_Layer(self):
256 257
        raise ValueError(
            "paddle do not support saving `paddle.nn.Layer` object.")
258 259 260 261 262 263 264

    dispatch_table_layer = dict()

    def create_layer_dispatch_table(layer):
        dispatch_table_layer[layer.__class__] = reduce_Layer
        return layer

J
Jiabin Yang 已提交
265
    _parse_every_object(obj, lambda v: isinstance(v, fluid.Layer),
266 267
                        create_layer_dispatch_table)

268 269
    def add_dispatch_table():
        # This is not a good method, because the pickle module has been modified.
270 271
        pickle.dispatch_table[core.VarBase] = reduce_varbase
        pickle.dispatch_table[ParamBase] = reduce_varbase
272 273
        pickle.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickle.dispatch_table[EagerParamBase] = reduce_varbase
274
        pickle.dispatch_table[core.LoDTensor] = reduce_LoDTensor
275
        pickle.dispatch_table.update(dispatch_table_layer)
276 277 278 279 280

    def pop_dispatch_table():
        pickle.dispatch_table.pop(core.VarBase)
        pickle.dispatch_table.pop(core.LoDTensor)
        pickle.dispatch_table.pop(ParamBase)
281 282
        pickle.dispatch_table.pop(core.eager.Tensor)
        pickle.dispatch_table.pop(EagerParamBase)
283 284
        for k in dispatch_table_layer:
            pickle.dispatch_table.pop(k)
285 286 287 288 289 290 291 292 293 294 295

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        add_dispatch_table()
        pickle_bytes = pickle.dumps(obj)
        pop_dispatch_table()

        max_bytes = 2**30
        for i in range(0, len(pickle_bytes), max_bytes):
            f.write(pickle_bytes[i:i + max_bytes])
    else:
T
tianshuo78520a 已提交
296 297
        pickler = pickle.Pickler(f, protocol)
        pickler.dispatch_table = copyreg.dispatch_table.copy()
298

T
tianshuo78520a 已提交
299 300 301
        pickler.dispatch_table[core.VarBase] = reduce_varbase
        pickler.dispatch_table[core.LoDTensor] = reduce_LoDTensor
        pickler.dispatch_table[ParamBase] = reduce_varbase
302 303
        pickler.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickler.dispatch_table[EagerParamBase] = reduce_varbase
T
tianshuo78520a 已提交
304 305
        pickler.dispatch_table.update(dispatch_table_layer)
        pickler.dump(obj)
306 307


308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
def _contain_x(obj, condition_func):
    if isinstance(obj, core.SelectedRows):
        raise NotImplementedError(
            "`paddle.save` do not support saving 'SelectedRows'.")

    if condition_func(obj):
        return True
    elif type(obj) in (dict, collections.OrderedDict, list, tuple):
        if type(obj) in (dict, collections.OrderedDict):
            keys = list(obj.keys())
        else:
            keys = range(len(obj))
        flag = False
        for key in keys:
            flag |= _contain_x(obj[key], condition_func)
            if flag:
                return True
        return flag
    else:
327
        return False
328 329 330 331 332 333


def _is_state_dict(obj):
    if isinstance(obj, dict):

        def condition(obj):
334 335 336
            return isinstance(
                obj, (fluid.Layer, Program, core.VarBase, core.eager.Tensor,
                      core.LoDTensor, core.SelectedRows))
337

338 339
        # If the value of a dict is a core.VarBase/LoDTensor or a dict
        # that does not contain a paddle type(Layer, Program, VarBase, LoDTensor, SelectedRows),
340 341 342 343 344 345
        # the dict is considered to be a state_ dict.
        for key, value in obj.items():
            if isinstance(value, dict):
                for k, v in value.items():
                    if _contain_x(v, condition):
                        return False
346 347
            elif not isinstance(
                    value, (core.VarBase, core.eager.Tensor, core.LoDTensor)):
348 349 350 351
                return False
        return True

    return False
352 353 354 355 356 357


def _transformed_from_varbase(obj):
    # In paddle2.1 version, VarBase is saved as tuple(tensor.name, tensor.numpy()).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, tuple) and len(obj) == 2:
T
tianshuo78520a 已提交
358
        name_types = str
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        if isinstance(obj[0], name_types) and isinstance(obj[1], np.ndarray):
            return True
    return False


def _transformed_from_lodtensor(obj):
    # In paddle2.1 version, LoDTensor is saved as np.array(tensor).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, np.ndarray):
        return True
    return False


def _to_LodTensor(ndarray):
    if not isinstance(ndarray, np.ndarray):
        raise TypeError(
            'Type of `ndarray` should be numpy.ndarray, but received {}.'.
            format(type(ndarray)))
    t = core.LoDTensor()
    place = _current_expected_place()
    t.set(ndarray, place)
    return t


def _tuple_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj[1]
J
Jiabin Yang 已提交
386
    if _non_static_mode():
387 388 389 390 391 392 393 394 395 396 397 398
        t = paddle.to_tensor(obj[1])
        # This function does modify the name of return value.
        # Loading the same variable multiple times may cause the same name.
        t.name = obj[0]
        return t
    else:
        return _to_LodTensor(obj[1])


def _ndarray_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj
J
Jiabin Yang 已提交
399
    if _non_static_mode():
400 401 402 403 404
        return paddle.to_tensor(obj)
    else:
        return _to_LodTensor(obj)


405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
def _lod_tensor2varbase(tensor):
    return_var = _varbase_creator()
    return_var.value().get_tensor().set(tensor, _current_expected_place())
    return return_var


def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif type(obj) in (dict, collections.OrderedDict, list):
        if type(obj) == list:
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
                obj[key] = _parse_every_object(obj[key], condition_func,
                                               convert_func)
        return obj
    elif type(obj) == tuple:
        return tuple(
            _parse_every_object(list(obj), condition_func, convert_func))
    elif type(obj) == set:
        return set(_parse_every_object(list(obj), condition_func, convert_func))
    else:
432
        if isinstance(obj, Iterable) and not isinstance(
433 434
                obj,
            (str, np.ndarray, core.VarBase, core.eager.Tensor, core.LoDTensor)):
435
            raise NotImplementedError(
436 437
                "The iteratable objects supported are tuple, list, dict, OrderedDict, string. But received {}."
                .format(type(obj)))
438 439 440 441
        return obj


def _parse_load_result(obj, return_numpy):
442

443
    def is_layer(obj):
J
Jiabin Yang 已提交
444
        return isinstance(obj, fluid.Layer)
445 446 447 448 449 450 451

    def parse_layer(obj):
        temp_dict = _parse_load_result(obj.__dict__, False)
        obj.__dict__.update(temp_dict)
        return obj

    if _contain_x(obj, is_layer):
J
Jiabin Yang 已提交
452
        if not _non_static_mode():
453 454 455 456 457 458 459 460 461 462 463 464
            raise ValueError(
                "Layer can only be loaded in dynamic graph mode, but now in static graph mode."
            )

        _parse_every_object(obj, is_layer, parse_layer)

    def tuple_to_tensor(obj):
        return _tuple_to_tensor(obj, return_numpy=return_numpy)

    def ndarray_to_tensor(obj):
        return _ndarray_to_tensor(obj, return_numpy=return_numpy)

465
    # tuple(name, ndarry) was converted from varbase of paddle2.1,
466 467 468 469
    # and all tuple(name, ndarry) are converted to tensor.
    if _contain_x(obj, _transformed_from_varbase):
        return _parse_every_object(obj, _transformed_from_varbase,
                                   tuple_to_tensor)
470
    # If there is no tuple(name, ndary), it is considered to be saved by paddle2.0
471 472 473 474 475 476
    # or converted from LoDTensor, and all ndarrays are converted to tensor.
    else:
        return _parse_every_object(obj, _transformed_from_lodtensor,
                                   ndarray_to_tensor)


477 478
def _save_lod_tensor(tensor, file_name):
    if not tensor._is_initialized():
B
Baibaifan 已提交
479 480 481
        raise ValueError(
            "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model firstly."
        )
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    if _is_file_path(file_name):
        _seek = core.save_lod_tensor(tensor, file_name)
        # '_seek' is the end position of this tensor in the file.

    elif _is_memory_buffer(file_name):
        tensor_bytes = core.save_lod_tensor_to_memory(tensor)

        with _open_file_buffer(file_name, 'wb') as f:
            f.write(tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports saving objects to file or BytesIO, but received {}'.
            format(type(file_name)))
497 498 499 500 501
    return _seek


def _load_lod_tensor(file_name):
    temp_t = paddle.fluid.core.LoDTensor()
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    if _is_file_path(file_name):
        # '_seek' is the end position of this tensor in the file.
        _seek = paddle.fluid.core.load_lod_tensor(temp_t, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            tensor_bytes = f.read()
            paddle.fluid.core.load_lod_tensor_from_memory(temp_t, tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports load objects from file or BytesIO, but received {}'.
            format(type(file_name)))

517 518 519 520 521 522
    return temp_t, _seek


def _save_selected_rows(selected_rows, file_name):
    if not selected_rows.get_tensor()._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
523 524 525 526 527 528 529 530 531 532 533 534 535
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.save_selected_rows(selected_rows, file_name)

    elif _is_memory_buffer(file_name):
        selected_rows_bytes = core.save_selected_rows_to_memory(selected_rows)
        with _open_file_buffer(file_name, 'wb') as f:
            f.write(selected_rows_bytes)
            _seek = f.tell()
    else:
        raise NotImplementedError(
            'Only supports saving objects to file or BytesIO, but received {}'.
            format(type(file_name)))
536 537 538 539 540
    return _seek


def _load_selected_rows(file_name):
    temp_sr = core.SelectedRows()
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.load_selected_rows(temp_sr, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            selected_rows_bytes = f.read()
            paddle.fluid.core.load_selected_rows_from_memory(
                temp_sr, selected_rows_bytes)
        _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports load objects from file or BytesIO, but received {}'.
            format(type(file_name)))

557 558 559 560 561 562 563 564
    return temp_sr, _seek


def _save_binary_var(obj, path):
    if isinstance(obj, core.LoDTensor):
        _save_lod_tensor(obj, path)
    elif isinstance(obj, core.SelectedRows):
        _save_selected_rows(obj, path)
565
    elif isinstance(obj, (core.VarBase, core.eager.Tensor)):
566
        _save_lod_tensor(obj.value().get_tensor(), path)
567 568 569
    else:
        # Since the concept of 'Tensor' is only exposed to users, the error message can only contain tensor instead of 'LoDTensor' or 'SelectedRows'
        raise NotImplementedError(
570 571
            "When use_binary_format = True, `paddle.save`  expected Tensor, but received {}."
            .format(type(obj)))
572 573


574
def save(obj, path, protocol=4, **configs):
575 576 577 578
    '''
    Save an object to the specified path.
    
    .. note::
579
        Now supports saving ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
580 581

    .. note::
582 583 584 585 586 587 588
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file, 
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path`` 
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix. 
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ; 
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` . 
        For specific examples, please refer to API code examples.
589 590 591
    
    Args:
        obj(Object) : The object to be saved.
592
        path(str|BytesIO) : The path/buffer of the object to be saved. 
593
          If saved in the current directory, the input path string will be used as the file name. 
594
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
595
                                 Default: 4
596 597 598 599
        **configs(dict, optional): optional keyword arguments. The following options are currently supported:
          use_binary_format(bool): When the saved object is static graph variable, you can specify ``use_binary_for_var``. 
          If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
          Default: False
600 601 602 603 604 605 606

    Returns:
        None

    Examples:
        .. code-block:: python

607
            # example 1: dynamic graph
608 609 610
            import paddle
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
611 612

            # save state_dict of emb
613
            paddle.save(layer_state_dict, "emb.pdparams")
614 615

            scheduler = paddle.optimizer.lr.NoamDecay(
616 617 618 619 620
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
621 622

            # save state_dict of optimizer
623
            paddle.save(opt_state_dict, "adam.pdopt")
624 625 626
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")

W
WeiXin 已提交
627 628 629 630 631 632 633 634 635 636 637 638
            # example 2: Save multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)


            # example 3: static graph
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
654
                    tensor = var.get_value()
655 656 657 658 659 660 661 662 663
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
W
WeiXin 已提交
664 665 666 667 668 669 670 671 672 673 674 675

            # example 4: save program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
676

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
    
    '''
    if _is_file_path(path):
        # 1. input check
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
                "filename is empty string.")

        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
    elif not _is_memory_buffer(path):
        raise ValueError(
            "only supports saving objects to file and `BytesIO`, but got {}".
            format(type(path)))
709 710 711 712 713 714 715 716

    config = _parse_save_config(configs)

    if not isinstance(config.use_binary_format, bool):
        raise TypeError(
            "Type of `use_binary_format` should be bool, but received {}.".
            format(type(config.use_binary_format)))

717 718
    if config.use_binary_format:
        _save_binary_var(obj, path)
719
    else:
720 721 722 723 724 725
        # `protocol` need to be used, `pickle_protocol` is a deprecated arg.
        if config.pickle_protocol is not None:
            protocol = config.pickle_protocol
            warnings.warn(
                "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
            )
726

727 728
        if isinstance(obj, Program):
            obj.desc.flush()
729
            with _open_file_buffer(path, "wb") as f:
730
                f.write(obj.desc.serialize_to_string())
731 732

        elif _is_state_dict(obj):
J
Jiabin Yang 已提交
733
            if _non_static_mode():
734 735 736 737
                _legacy_save(obj, path, protocol)
            else:
                _legacy_static_save(obj, path, protocol)
        else:
738
            with _open_file_buffer(path, 'wb') as f:
739
                _pickle_save(obj, f, protocol)
740

741 742

def _legacy_save(obj, path, protocol=2):
743 744 745 746 747 748 749 750 751
    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
            "expect dict, but received %s." % type(obj))

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

752
    if not isinstance(protocol, int):
W
WeiXin 已提交
753
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
754
            type(protocol)))
W
WeiXin 已提交
755

756
    if protocol < 2 or protocol > 4:
757 758 759
        raise ValueError(
            "Expected 1<'protocol'<5, but received protocol={}".format(
                protocol))
W
WeiXin 已提交
760

761 762 763 764 765 766 767 768 769 770 771
    if _is_file_path(path):
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
                "filename is empty string.")
        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
772

W
WeiXin 已提交
773 774 775
    if isinstance(obj, dict):
        saved_obj = _build_saved_state_dict(obj)

776
    saved_obj = _unpack_saved_dict(saved_obj, protocol)
777

778
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
779 780
    if _is_file_path(
            path) and sys.platform == 'darwin' and sys.version_info.major == 3:
781
        pickle_bytes = pickle.dumps(saved_obj, protocol=protocol)
782 783 784 785 786
        with open(path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
787
        with _open_file_buffer(path, 'wb') as f:
788
            pickle.dump(saved_obj, f, protocol=protocol)
789 790


791
def load(path, **configs):
792 793 794 795
    '''
    Load an object can be used in paddle from specified path.

    .. note::
796
        Now supports loading ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
797 798

    .. note::
799 800 801 802
        In order to use the model parameters saved by paddle more efficiently, 
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of 
        other save APIs except ``paddle.save`` , but the argument ``path`` format is 
        different:
803 804 805 806 807 808 809 810 811 812 813 814
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,  
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or 
        ``model.pdopt`` ; 
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model`` 
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix, 
        such as ``model/mnist``, and ``paddle.load`` will get information from 
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or 
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a 
        directory, such as ``model`` and model is a directory.

    .. note::
815
        If you load ``state_dict`` from the saved result of static mode API such as 
816
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` , 
817 818 819
        the structured variable name in dynamic mode will cannot be restored. 
        You need to set the argument ``use_structured_name=False`` when using 
        ``Layer.set_state_dict`` later.
820 821

    Args:
822
        path(str|BytesIO) : The path/buffer to load the target object. Generally, the path is the target 
823 824
            file path. When loading state_dict from the saved result of the API used to save 
            the inference model, the path may be a file prefix or directory.
825 826 827 828
        **configs (dict, optional): other load configuration options for compatibility. We do not 
            recommend using these configurations, they may be removed in the future. If not necessary, 
            DO NOT use them. Default None.
            The following options are currently supported:
829
            (1) model_filename (str): The inference model file name of the paddle 1.x 
830
            ``save_inference_model`` save format. Default file name is :code:`__model__` . 
831
            (2) params_filename (str): The persistable variables file name of the paddle 1.x 
832
            ``save_inference_model`` save format. No default file name, save variables separately 
833 834 835
            by default.            
            (3) return_numpy(bool): If specified as True, return tensor as numpy.ndarray, otherwise return tensor as paddle.Tensor. 
            Default False.
836 837 838 839 840 841 842

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python

843 844
            # example 1: dynamic graph
            import paddle
845 846
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
847 848

            # save state_dict of emb
849
            paddle.save(layer_state_dict, "emb.pdparams")
850 851

            scheduler = paddle.optimizer.lr.NoamDecay(
852 853 854 855 856
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
857 858

            # save state_dict of optimizer
859
            paddle.save(opt_state_dict, "adam.pdopt")
860 861
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")
862

863
            # load state_dict of emb
864
            load_layer_state_dict = paddle.load("emb.pdparams")
865
            # load state_dict of optimizer
866
            load_opt_state_dict = paddle.load("adam.pdopt")
867 868 869 870
            # load weight of emb
            load_weight = paddle.load("emb.weight.pdtensor")


W
WeiXin 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883
            # example 2: Load multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)
            obj_load = paddle.load(path)


            # example 3: static graph
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
899
                    tensor = var.get_value()
900 901 902 903 904 905 906 907 908 909 910 911
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)
            load_tensor = paddle.load(path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
            load_state_dict = paddle.load(path_tensor)

W
WeiXin 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

            # example 4: load program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
            load_main = paddle.load(path)
            print(load_main)


928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
            byio.seek(0)
            # load state_dict
            dict_load = paddle.load(byio)

944
    '''
945

946
    if _is_memory_buffer(path) or os.path.isfile(path):
947
        config = _parse_load_config(configs)
T
tianshuo78520a 已提交
948
        exception_type = pickle.UnpicklingError
W
WeiXin 已提交
949
        try:
950
            with _open_file_buffer(path, 'rb') as f:
W
WeiXin 已提交
951
                # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
952 953 954
                if _is_file_path(
                        path
                ) and sys.platform == 'darwin' and sys.version_info.major == 3:
W
WeiXin 已提交
955 956
                    load_result = _pickle_loads_mac(path, f)
                else:
T
tianshuo78520a 已提交
957
                    load_result = pickle.load(f, encoding='latin1')
958

W
WeiXin 已提交
959 960
                # TODO(weixin):If `obj` is any object, the judgment condition should be more precise.
                if isinstance(load_result, dict):
961
                    load_result = _pack_loaded_dict(load_result)
W
WeiXin 已提交
962 963 964 965
                    # paddle2.0: paddle.save/load
                    if "StructuredToParameterName@@" in load_result:

                        for key in load_result["StructuredToParameterName@@"]:
S
Steffy-zxf 已提交
966 967 968
                            if isinstance(load_result[key], np.ndarray):
                                load_result[key] = _ndarray_to_tensor(
                                    load_result[key], config.return_numpy)
W
WeiXin 已提交
969 970 971 972 973

                        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
                            del load_result["StructuredToParameterName@@"]
                    else:
                        # paddle2.1 static.save/load
974 975
                        load_result = _parse_load_result(
                            load_result, config.return_numpy)
976 977

                else:
978 979
                    load_result = _parse_load_result(load_result,
                                                     config.return_numpy)
980 981 982 983 984 985 986 987

        except exception_type as msg_pickle:
            try:
                tensor, _ = _load_selected_rows(path)
                return tensor
            except:
                try:
                    tensor, _ = _load_lod_tensor(path)
988 989 990
                    if config.return_numpy:
                        return np.array(tensor)
                    else:
J
Jiabin Yang 已提交
991
                        if _non_static_mode():
992 993
                            return _lod_tensor2varbase(tensor)
                        return tensor
994 995
                except:
                    try:
996
                        with _open_file_buffer(path, "rb") as f:
997 998 999 1000 1001 1002 1003 1004
                            program_desc_str = f.read()
                            program = Program.parse_from_string(
                                program_desc_str)
                            return program
                    except:
                        raise ValueError(
                            "`paddle.load` can not parse the file:{}.".format(
                                path))
1005 1006 1007 1008 1009 1010 1011 1012

    else:
        load_result = _legacy_load(path, **configs)

    return load_result


def _legacy_load(path, **configs):
1013
    load_result = None
1014 1015
    config = _parse_load_config(configs)

1016
    if os.path.isfile(path) or _is_memory_buffer(path):
1017
        # we think path is file means this file is created by paddle.save
1018
        with _open_file_buffer(path, 'rb') as f:
T
tianshuo78520a 已提交
1019
            load_result = pickle.load(f, encoding='latin1')
1020
        load_result = _pack_loaded_dict(load_result)
1021 1022
        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
            del load_result["StructuredToParameterName@@"]
1023 1024 1025
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
1026 1027 1028 1029 1030
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
1031
        model_file_path = os.path.join(model_path, model_filename)
1032 1033 1034 1035

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
1036 1037 1038
            # The model saved by `save_inference_model` does not completely correspond to
            # the information required by the `state_dict` under the dygraph.
            # `save_inference_model` not save structured name, we need to remind
1039
            # the user to configure the `use_structured_name` argument when `set_state_dict`
1040 1041 1042
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state
            load_result = _load_state_dict_from_save_inference_model(
                model_path, config)
1043 1044
        else:
            # load state dict by `io.save_params/persistables` save format
1045
            # TODO(chenweihang): [ Now only supports loading parameters separately ]
1046
            # If users save all parameters as one file, the [ variable.name -> variable ]
1047
            # mapping info will lost, so users need to give variable list, but users build
1048 1049
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
1050
            load_result = _load_state_dict_from_save_params(model_path)
1051 1052

    return load_result