test_variable.py 42.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import unittest
W
WeiXin 已提交
18 19
from functools import reduce

20
import paddle
J
Jiabin Yang 已提交
21
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, _non_static_mode
22
import paddle
W
wopeizl 已提交
23
import paddle.fluid as fluid
H
Hongyu Liu 已提交
24
import paddle.fluid.layers as layers
25
import paddle.fluid.core as core
Y
Yu Yang 已提交
26 27
import numpy as np

28 29
paddle.enable_static()

Y
Yu Yang 已提交
30 31

class TestVariable(unittest.TestCase):
32

Y
Yu Yang 已提交
33
    def test_np_dtype_convert(self):
34
        DT = core.VarDesc.VarType
35
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
36 37 38 39 40 41 42
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
43 44
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46
    def test_var(self):
Y
Yu Yang 已提交
47
        b = default_main_program().current_block()
48 49 50 51
        w = b.create_var(dtype="float64",
                         shape=[784, 100],
                         lod_level=0,
                         name="fc.w")
52
        self.assertNotEqual(str(w), "")
53
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
54 55
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
56
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
57 58 59
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
60
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
61 62
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
63
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
64 65 66 67 68
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

69 70 71
        w = b.create_var(dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
                         shape=[1],
                         name="str_var")
72 73
        self.assertEqual(None, w.lod_level)

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
103 104 105
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
106 107
        var = b.create_var(name='step_scopes',
                           type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
108 109
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
110
    def _test_slice(self, place):
W
wopeizl 已提交
111 112 113 114 115
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
116
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
117 118 119 120

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
121
        nw = w[:, :]
W
wopeizl 已提交
122 123
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
124 125
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
126

H
Hongyu Liu 已提交
127 128 129 130 131 132 133
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
134 135 136 137 138 139

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
140 141 142 143
            tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                     [[19, 20, 21], [22, 23, 24],
                                      [25, 26, 27]]]).astype('float32')
W
wopeizl 已提交
144 145 146 147
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
148 149
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
150
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
151 152 153 154 155 156 157 158 159 160
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
161 162 163

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
164
            y_1 = y[:, 0]
W
wopeizl 已提交
165 166 167 168 169
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
170
            local_out = exe.run(main,
W
wopeizl 已提交
171
                                feed=feeder.feed([data]),
W
wopeizl 已提交
172 173
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
174 175
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
176 177
                                ])

H
Hongyu Liu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            self.assertTrue(
                np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
            self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
            self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
            self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
            self.assertTrue(
                np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
            self.assertTrue(
                np.array_equal(local_out[6],
                               tensor_array.reshape((3, -1, 3))[:, :, -1]))
            self.assertTrue(
                np.array_equal(local_out[7], tensor_array[:, :, :-1]))
            self.assertTrue(
                np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
            self.assertTrue(
                np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
            self.assertTrue(
                np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
            self.assertTrue(
                np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
W
wopeizl 已提交
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

261 262 263 264 265
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
266
            y = paddle.assign([1, 2, 3, 4])
267 268 269 270
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
271 272
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
273
            out7 = y[..., 0]
274 275

        exe = paddle.static.Executor(place)
276 277
        result = exe.run(prog,
                         fetch_list=[out1, out2, out3, out4, out5, out6, out7])
278

W
WeiXin 已提交
279 280
        expected = [
            data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...],
281 282
            data[[1, 0], [0, 0]], data[([1, 0], [0, 0])],
            np.array([1])
W
WeiXin 已提交
283
        ]
284 285 286 287 288

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
289 290
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
291
        self.assertTrue((result[6] == expected[6]).all())
292

293 294
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
295

296
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
297 298
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
299 300 301 302 303
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
304 305 306 307
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
308 309 310 311 312

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
313 314 315 316
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
317 318

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
319 320
        result = exe.run(
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7])
321

Z
zyfncg 已提交
322 323 324 325
        expected = [
            data[idx0], data[idx1], data[idx2], data[idx3], data[idx4],
            data[np_idx], data[data < 0.36], data[data > 0.6]
        ]
326 327 328 329 330

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
331 332 333 334
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
335

Z
zyfncg 已提交
336 337 338
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
339 340
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

359 360
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
361
        if core.is_compiled_with_cuda():
362 363 364 365 366 367
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
368
            self._test_slice_index_ellipsis(place)
369
            self._test_slice_index_list_bool(place)
370
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

388
    def test_fake_interface_only_api(self):
389 390 391
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
408
            var.stop_gradient = True
409 410 411 412 413 414
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
415

416 417 418
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

419 420 421 422 423
        var = b.create_var(name="var",
                           shape=[1, 1],
                           dtype="float32",
                           type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
                           persistable=True)
424 425 426 427 428 429

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
458 459 460
                x = paddle.static.data(name='x',
                                       shape=[3, 2, 1],
                                       dtype='float32')
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

478 479 480
                modified_value = np.random.uniform(-1, 1,
                                                   size=[3, 2,
                                                         1]).astype('float32')
481 482 483 484 485
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
486

487
class TestVariableSlice(unittest.TestCase):
488

489 490 491 492 493 494 495 496 497
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
498
            out4 = x[..., None, :, None]
499

500
        outs = [out0, out1, out2, out3, out4]
501 502 503 504
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
505 506
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None],
            data[..., None, :, None]
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
546
class TestListIndex(unittest.TestCase):
547

W
WeiXin 已提交
548 549 550 551 552 553 554
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
555 556
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
557 558 559 560 561 562 563 564 565 566

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
567 568 569
                x = paddle.static.data(name='x',
                                       shape=array.shape,
                                       dtype='float32')
W
WeiXin 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

                y = x[index_mod]

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
                self.assertTrue(np.array_equal(getitem_np, getitem_pp[0]))

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
            self.assertTrue(np.array_equal(getitem_np, getitem_pp.numpy()))

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
622 623
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
624 625 626 627 628 629

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
630 631
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
632 633 634 635 636 637 638 639 640

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

641 642 643 644 645 646 647 648 649
            value = paddle.static.data(name='value',
                                       shape=value_np.shape,
                                       dtype='float32')
            index1 = paddle.static.data(name='index1',
                                        shape=index1.shape,
                                        dtype='int32')
            index2 = paddle.static.data(name='index2',
                                        shape=index2.shape,
                                        dtype='int32')
W
WeiXin 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

            y = x[index1, index2]

            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

            getitem_pp = exe.run(prog,
                                 feed={
                                     x.name: array,
                                     index1.name: index_mod1,
                                     index2.name: index_mod2
                                 },
                                 fetch_list=fetch_list)

674 675 676
            self.assertTrue(np.array_equal(y2, getitem_pp[0]),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                y2, getitem_pp[0]))
W
WeiXin 已提交
677 678 679 680

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
681 682
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
683 684 685 686 687 688

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
689 690
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
691 692 693 694 695 696 697 698 699 700 701 702

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
        self.assertTrue(np.array_equal(y.numpy(), y_np))

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

        print(getitem_pp)
727 728 729
        self.assertTrue(np.array_equal(value_np, getitem_pp[0]),
                        msg='\n numpy:{},\n paddle:{}'.format(
                            value_np, getitem_pp[0]))
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
758 759 760
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

761 762 763
        value = paddle.static.data(name='value',
                                   shape=value_np.shape,
                                   dtype='float32')
W
WeiXin 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
780 781 782 783 784 785
                setitem_pp = exe.run(prog,
                                     feed={
                                         x.name: array,
                                         value.name: value_np
                                     },
                                     fetch_list=fetch_list)
W
WeiXin 已提交
786 787
            return
        setitem_pp = exe.run(prog,
788 789 790 791
                             feed={
                                 x.name: array,
                                 value.name: value_np
                             },
W
WeiXin 已提交
792 793
                             fetch_list=fetch_list)

794 795 796
        self.assertTrue(np.allclose(array2, setitem_pp[0]),
                        msg='\n numpy:{},\n paddle:{}'.format(
                            array2, setitem_pp[0]))
W
WeiXin 已提交
797 798 799 800 801

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
802 803
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
804 805 806 807 808

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
809 810
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
825 826
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
827 828 829 830 831

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
832 833
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
847 848
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
849 850 851 852 853

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
854 855
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
856 857 858
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
895 896 897
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
898 899
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
900 901

        index_shape = [2, 3, 4]
902 903 904 905
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
906 907

        value_shape = [4]
908 909
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')

                value = paddle.static.data(name='value',
                                           shape=value_np.shape,
                                           dtype='float32')
                index_1 = paddle.static.data(name='index_1',
                                             shape=index1.shape,
                                             dtype='int32')
                index_2 = paddle.static.data(name='index_2',
                                             shape=index2.shape,
                                             dtype='int32')
W
WeiXin 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

                x1[index_1, index_2] = value
                x2[index_1] = value

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

                setitem_pp = exe.run(prog,
                                     feed={
                                         x1.name: array,
                                         x2.name: array,
                                         value.name: value_np,
                                         index_1.name: index_mod1,
                                         index_2.name: index_mod2
                                     },
                                     fetch_list=fetch_list)
962 963 964 965 966 967
                self.assertTrue(np.array_equal(array2, setitem_pp[0]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array2, setitem_pp[0]))
                self.assertTrue(np.array_equal(array3, setitem_pp[1]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array3, setitem_pp[1]))
W
WeiXin 已提交
968 969 970 971 972 973 974
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
975 976
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
977 978

        index_shape = [2, 3, 4]
979 980 981 982
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

998 999 1000 1001 1002 1003
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')
W
WeiXin 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

                setitem_pp = exe.run(prog,
1019 1020 1021 1022
                                     feed={
                                         x1.name: array,
                                         x2.name: array
                                     },
W
WeiXin 已提交
1023
                                     fetch_list=fetch_list)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                self.assertTrue(np.array_equal(array2, setitem_pp[0]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array2, setitem_pp[0]))
                self.assertTrue(np.array_equal(array3, setitem_pp[1]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    array3, setitem_pp[1]))

                self.assertTrue(np.array_equal(y_np1, setitem_pp[2]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    y_np1, setitem_pp[2]))
                self.assertTrue(np.array_equal(y_np2, setitem_pp[3]),
                                msg='\n numpy:{},\n paddle:{}'.format(
                                    y_np2, setitem_pp[3]))
W
WeiXin 已提交
1037 1038 1039 1040 1041 1042 1043
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1044 1045
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
1046
        index_shape = [2, 3, 4]
1047 1048 1049 1050
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1065 1066 1067
            self.assertTrue(np.array_equal(y_t1.numpy(), y_np1),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                y_np1, y_t1.numpy()))
W
WeiXin 已提交
1068 1069 1070 1071 1072 1073
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1074 1075 1076
            self.assertTrue(np.array_equal(y_t2.numpy(), y_np2),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                y_np2, y_t2.numpy()))
W
WeiXin 已提交
1077 1078 1079 1080 1081

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1082 1083 1084
            self.assertTrue(np.array_equal(tensor1.numpy(), array1),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                array1, tensor1.numpy()))
W
WeiXin 已提交
1085 1086 1087 1088 1089 1090 1091
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1092 1093 1094
            self.assertTrue(np.array_equal(tensor2.numpy(), array2),
                            msg='\n numpy:{},\n paddle:{}'.format(
                                array2, tensor2.numpy()))
W
WeiXin 已提交
1095 1096 1097 1098 1099 1100

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1101 1102
if __name__ == '__main__':
    unittest.main()