conv_fusion_op.cc 10.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/operators/conv_op.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
Q
qingqing01 已提交
19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

// This fused conv follows the equation:
//   y = act ( alpha1 * conv(x) + alpha2 * z + bias ).
//   here, y is Output,
//         x is Input,
//         z is ResidualData,
//         bias is Bias
T
tianshuo78520a 已提交
29
// When `split_channels` is set, y will be split into multiple outputs,
Q
qingqing01 已提交
30
// each output has split_channels[i] number of channels.
Q
qingqing01 已提交
31 32 33 34 35 36 37 38
class Conv2DFusionOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<std::string>(
        "activation",
        "The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
        "'relux' , 'tanh', 'band_pass'")
        .SetDefault("relu");
Q
qingqing01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    AddAttr<std::vector<int>>(
        "split_channels",
        "When `split_channels` are set, there will be multiple outputs, the "
        "output size is equal to the number of `split_channels`.")
        .SetDefault({});
    AddOutput("Outputs",
              "This Outputs is used when setting `split_channels`."
              "Usually used to fuse conv with same input and same filter size, "
              "padding, stride, dilation size.")
        .AsDuplicable()
        .AsDispensable();
    AddInput("AlgoCache",
             "The cache of convolution algorithm, a RAW type variable.")
        .AsDispensable();
    AddAttr<int>(
        "search_times",
        "The number of exhaustive search times for convolution algorithm.")
        .SetDefault(-1);
Q
qingqing01 已提交
57 58
  }
};
Q
qingqing01 已提交
59

Z
Zeng Jinle 已提交
60
class Conv2DFusionOp : public operators::ConvOp {
Q
qingqing01 已提交
61
 public:
Z
Zeng Jinle 已提交
62 63 64 65
  using operators::ConvOp::ConvOp;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
66 67
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv2DFusion");
    OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "Conv2DFusion");
68

69
    auto in_dims = ctx->GetInputDim("Input");
70
    PADDLE_ENFORCE_EQ(
71 72 73 74 75 76 77 78 79 80 81 82
        in_dims.size(), 4U,
        platform::errors::InvalidArgument(
            "The input's dimension of Operator(Conv2DFusion) is expected "
            "to be 4. But received: input's dimension = %u, shape = [%s].",
            in_dims.size(), in_dims));

    // In some case, attribute data_format is "AnyLayout".
    std::string data_format = ctx->Attrs().Get<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        platform::errors::PermissionDenied(
            "Operator(Conv2DFusion) only supports data format of "
83
            "channel first (NCHW) now. But received: data_format = '%s'.",
84 85 86
            data_format));

    std::vector<int64_t> output_shape = ComputeOutputShape(ctx);
87
    ctx->SetOutputDim("Output", phi::make_ddim(output_shape));
88
    ctx->ShareLoD("Input", "Output");
89

90
    std::vector<int> split_channels =
Q
qingqing01 已提交
91
        ctx->Attrs().Get<std::vector<int>>("split_channels");
92 93 94 95 96 97 98 99 100 101 102
    if (split_channels.size()) {
      OP_INOUT_CHECK(ctx->HasOutputs("Outputs"), "Output", "Outputs",
                     "Conv2DFusion");
      PADDLE_ENFORCE_EQ(
          ctx->Outputs("Outputs").size(), split_channels.size(),
          platform::errors::InvalidArgument(
              "The number of Output(Outputs) of operator 'Conv2DFusion' is "
              "expected to be equal to the length of Attr(split_channels). But "
              "reiceved: the number of Output(Outputs) = %u; the length of "
              "Attr(split_channels) = %u, the content = [%s].",
              ctx->Outputs("Outputs").size(), split_channels.size(),
103
              phi::make_ddim(split_channels)));
104 105 106 107 108

      int split_channels_sum = 0;
      std::vector<framework::DDim> output_shapes(split_channels.size());
      for (size_t i = 0; i < split_channels.size(); ++i) {
        split_channels_sum += split_channels[i];
109 110
        output_shapes[i] = phi::make_ddim({output_shape[0], split_channels[i],
                                           output_shape[2], output_shape[3]});
Q
qingqing01 已提交
111
      }
112 113 114 115
      PADDLE_ENFORCE_EQ(
          split_channels_sum, output_shape[1],
          platform::errors::InvalidArgument(
              "The sum of Attr(split_channels) is expected to be equal to the "
116
              "total output channels. But received: the sum of "
117 118 119 120
              "Attr(split_channels) = %d, the total output channels = %d.",
              split_channels_sum, output_shape[1]));

      ctx->SetOutputsDim("Outputs", output_shapes);
Q
qingqing01 已提交
121 122
    }
  }
H
hong 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

  std::vector<int64_t> ComputeOutputShape(
      framework::InferShapeContext* ctx) const {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::string padding_algorithm =
        ctx->Attrs().Get<std::string>("padding_algorithm");
    int groups = ctx->Attrs().Get<int>("groups");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
    int dilation_size = dilations.size();
    for (int i = 0; i < dilation_size; ++i) {
      PADDLE_ENFORCE_GT(
          dilations[i], 0,
          platform::errors::InvalidArgument(
              "The dilation of Op(Conv) should be larget than 0, but received "
              "dilation is %d.",
              dilations[i]));
    }
    const std::string data_format =
        ctx->Attrs().Get<std::string>("data_format");

    // MKL-DNN Kernels are using NCHW order of dims description
    // so we ignore data_format consideration for MKL-DNN kernel
    const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
                              (data_format == "NHWC" || data_format == "NDHWC");

    PADDLE_ENFORCE_EQ(
        in_dims.size() == 4 || in_dims.size() == 5, true,
        platform::errors::InvalidArgument(
            "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
            "received: input's dimension is %u, input's shape is [%s].",
            in_dims.size(), in_dims));

    PADDLE_ENFORCE_EQ(
        in_dims.size(), filter_dims.size(),
        platform::errors::InvalidArgument(
            "The input's dimension and filter's dimension of "
            "Op(Conv) should be equal. But received: the input's shape is "
            "[%s], "
            "the input's dimension is %d; the filter's shape is [%s],  "
            "the filter's dimension is %d.",
            in_dims, in_dims.size(), filter_dims, filter_dims.size()));

    int stride_size = strides.size();
    for (int i = 0; i < stride_size; ++i) {
      PADDLE_ENFORCE_GT(
          strides[i], 0,
          platform::errors::InvalidArgument(
              "The stride of Op(Conv) should be larget than 0, but received "
              "stride is %d.",
              strides[i]));
    }

    int in_sub_stride_size = in_dims.size() - stride_size;
    PADDLE_ENFORCE_EQ(
        in_dims.size(), strides.size() + 2U,
        platform::errors::InvalidArgument(
            "The difference of input's dimension and Attr(strides)'s "
            "length must be euqal to 2 for Op(Conv). "
            "But received: input's dimension is %d, input's shape is [%s]; "
            "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
            "difference of input's dimention and Attr(strides)'s length = %u.",
            in_dims.size(), in_dims, strides.size(), phi::make_ddim(strides),
            in_sub_stride_size));

    const auto input_channels =
        channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];

    PADDLE_ENFORCE_EQ(
        input_channels, filter_dims[1] * groups,
        platform::errors::InvalidArgument(
            "The number of input's channels should be equal to filter's "
            "channels "
            "* groups for Op(Conv). But received: the input's channels is %d, "
            "the input's shape is [%s]; the filter's channels is %d, the "
            "filter's shape is [%s]; the groups is %d, the data_format is %s. "
            "The error may come from wrong data_format setting.",
            input_channels, in_dims, filter_dims[1], filter_dims, groups,
            data_format));
    PADDLE_ENFORCE_EQ(
        filter_dims[0] % groups, 0,
        platform::errors::InvalidArgument(
            "The number of output's channels (filter's first dimension) of "
            "Op(Conv) should be divided by groups. But received: "
            "the output channels is %d, the filter's shape is [%s], "
            "the groups is %d.",
            filter_dims[0], filter_dims, groups));

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_GT(
          filter_dims[0], 0,
          platform::errors::InvalidArgument(
              "the size of filter at axis 0 should be greater than 0"));
    }

    framework::DDim in_data_dims;
    if (channel_last) {
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
    } else {
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
    }

    framework::DDim filter_data_dims =
        phi::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    std::vector<int64_t> output_shape({in_dims[0]});
    if (!channel_last) {
      output_shape.push_back(filter_dims[0]);
    }
    for (int i = 0; i < in_data_dims.size(); ++i) {
      if ((!ctx->IsRuntime()) &&
          (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(
            ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                           paddings[2 * i], paddings[2 * i + 1], strides[i]));
      }
    }
    if (channel_last) {
      output_shape.push_back(filter_dims[0]);
    }

    return output_shape;
  }
Q
qingqing01 已提交
259 260
};

Q
qingqing01 已提交
261 262 263 264 265 266
// TODO(qingqing): add gradient operator for conv2d_fusion

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
267
REGISTER_OPERATOR(
Z
Zeng Jinle 已提交
268 269
    conv2d_fusion, ops::Conv2DFusionOp, ops::Conv2DFusionOpMaker,
    ops::ConvOpInferVarType,
H
hong 已提交
270 271
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);