eig_op.h 13.9 KB
Newer Older
L
Lijunhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>
#include <algorithm>
#include <complex>
#include "paddle/fluid/operators/math/matrix_solve.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/for_range.h"
23
#include "paddle/phi/kernels/complex_kernel.h"
24 25 26
#include "paddle/phi/kernels/elementwise_divide_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
27
#include "paddle/phi/kernels/funcs/complex_functors.h"
28
#include "paddle/phi/kernels/funcs/diag_functor.h"
29 30
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
31 32 33 34 35
#include "paddle/phi/kernels/funcs/slice.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"

L
Lijunhui 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#define EPSILON 1e-6

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

inline int BatchCount(const Tensor& matrix) {
  int count = 1;
  int num_dims = matrix.dims().size();
  for (int i = 0; i < num_dims - 2; ++i) {
    count *= matrix.dims()[i];
  }
  return count;
}

inline int MatrixStride(const Tensor& matrix) {
  framework::DDim dims_list = matrix.dims();
  int num_dims = dims_list.size();
  return dims_list[num_dims - 1] * dims_list[num_dims - 2];
}

// Transpose two axis of a Tensor
template <typename DeviceContext, typename T>
void TransposeTwoAxis(const Tensor& input, Tensor* transposed_input,
                      const int axis1, const int axis2,
                      const framework::ExecutionContext& context) {
  std::vector<int> permute(input.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis1] = axis2;
  permute[axis2] = axis1;

  transposed_input->mutable_data<T>(input.dims(), context.GetPlace());
  auto& dev_ctx = context.template device_context<platform::CPUDeviceContext>();

  TransCompute<DeviceContext, T>(input.dims().size(), dev_ctx, input,
                                 transposed_input, permute);
}

// Apply eig to a batch of matrices, values, vectors and (intermidiate
// tensor) info are overritten
template <typename T>
void LapackEig(Tensor* input, Tensor* values, Tensor* vectors, int info,
               const framework::ExecutionContext& context) {
  char jobvl = 'N';
  char jobvr = 'V';  // only right eigenvectors are computed
  int num_dims = input->dims().size();
  int order = input->dims()[num_dims - 1];

  T* input_data = input->data<T>();
  int lda = std::max<int>(1, order);
  T* values_data = values->mutable_data<T>(context.GetPlace());
  T* lvector_data = nullptr;
  int ldvl = 1;
  T* rvector_data = vectors->mutable_data<T>(context.GetPlace());
  int ldvr = lda;
  int lwork = -1;

  int batch_count = BatchCount(*input);
  int matrix_stride = MatrixStride(*input);
  int values_stride = values->dims()[values->dims().size() - 1];

  Tensor rwork;
99
  phi::dtype::Real<T>* rwork_data = nullptr;
L
Lijunhui 已提交
100

101
  rwork.Resize(phi::make_ddim({lda * 2}));
102
  rwork_data = rwork.mutable_data<phi::dtype::Real<T>>(context.GetPlace());
L
Lijunhui 已提交
103 104 105

  // call lapackEig once to compute the size of work;
  T computed_work_size;
106
  phi::funcs::lapackEig<T, phi::dtype::Real<T>>(
L
Lijunhui 已提交
107 108 109
      jobvl, jobvr, order, input_data, lda, values_data, lvector_data, ldvl,
      rvector_data, ldvr, &computed_work_size, lwork, rwork_data, &info);

110
  lwork = std::max<int>(
111
      1, static_cast<int>(phi::dtype::Real<T>(computed_work_size)));
L
Lijunhui 已提交
112
  Tensor work;
113
  work.Resize(phi::make_ddim({lwork}));
L
Lijunhui 已提交
114 115 116 117 118 119 120
  T* work_data = work.mutable_data<T>(context.GetPlace());

  for (auto i = 0; i < batch_count; ++i) {
    T* current_matrix = &input_data[i * matrix_stride];
    T* current_values = &values_data[i * values_stride];
    T* current_rvectors = &rvector_data[i * matrix_stride];

121
    phi::funcs::lapackEig<T, phi::dtype::Real<T>>(
L
Lijunhui 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        jobvl, jobvr, order, current_matrix, lda, current_values, lvector_data,
        ldvl, current_rvectors, ldvr, work_data, lwork, rwork_data, &info);
    PADDLE_ENFORCE_EQ(
        info, 0,
        platform::errors::PreconditionNotMet(
            "current info is not 0, computation failed. "
            "= 0:  successful exit."
            "< 0:  if INFO = -i, the i-th argument had an illegal value."
            "> 0:  if INFO = i, the QR algorithm failed to compute all the "
            "eigenvalues, and no eigenvectors have been computed; "
            "elements i+1:N of WR and WI contain eigenvalues which "
            "have converged."));
  }
}

template <typename DeviceContext, typename T>
void ApplyEigKernel(const Tensor& input, Tensor* values, Tensor* vectors,
                    const framework::ExecutionContext& context) {
  Tensor input_column_major;
  Tensor vectors_row_major;
  int num_dims = input.dims().size();

  // transfer to column-major memory layout i.e. make_ddim from tranposed_input:
  // [batch,row,col]->[batch,col,row]
  TransposeTwoAxis<DeviceContext, T>(input, &input_column_major, num_dims - 1,
                                     num_dims - 2, context);
  // make sure 'vectors_row_major' holds memory before passed to LapackEig()
  vectors_row_major.Resize(input.dims());
  int info = 0;
  LapackEig<T>(&input_column_major, values, &vectors_row_major, info, context);

  // transfer column-major layout back
  // vectors_row_major: column-major layout
  // vector: original layout
  TransposeTwoAxis<DeviceContext, T>(vectors_row_major, vectors, num_dims - 1,
                                     num_dims - 2, context);
}

template <typename T, typename Tout>
void ConstructComplexVectors(Tensor* c_vectors, const Tensor& c_values,
                             const Tensor& r_vectors,
                             const framework::ExecutionContext& ctx,
                             int batch_count, int order) {
  int matrix_stride = MatrixStride(r_vectors);

  auto* c_vectors_data = c_vectors->mutable_data<Tout>(ctx.GetPlace());
  auto* c_values_data = c_values.data<Tout>();
  auto* r_v_data = r_vectors.data<T>();

  for (int b = 0; b < batch_count; b++) {
    auto* vecs = &r_v_data[b * matrix_stride];
    auto* res = &c_vectors_data[b * matrix_stride];
    auto* vals = &c_values_data[b * order];

    for (int j = 0; j < order; j++) {
      if (vals[j].imag < EPSILON) {
        for (int i = 0; i < order; i++) {
          res[j * order + i] = platform::complex<T>(vecs[j * order + i], 0);
        }
      } else {
        for (int i = 0; i < order; i++) {
          res[j * order + i] = platform::complex<T>(vecs[j * order + i],
                                                    vecs[(j + 1) * order + i]);
          res[(j + 1) * order + i] = platform::complex<T>(
              vecs[j * order + i], -vecs[(j + 1) * order + i]);
        }
        j++;
      }
    }
  }
}

template <typename DeviceContext, typename T, typename Tout>
class EigKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out_values = context.Output<Tensor>("Eigenvalues");
    auto* out_vectors = context.Output<Tensor>("Eigenvectors");

202
    if (!framework::IsComplexType(framework::TransToProtoVarType(x->dtype()))) {
L
Lijunhui 已提交
203 204 205 206 207 208 209 210 211 212
      out_values->mutable_data<Tout>(context.GetPlace());
      out_vectors->mutable_data<Tout>(context.GetPlace());

      int batch_count = BatchCount(*x);
      int order = x->dims()[x->dims().size() - 1];

      Tensor real_values;
      Tensor real_vectors;
      // double the size of real_values, the first half stores the real part,
      // the next half stores the imag part
213
      std::vector<int> origin_dim = phi::vectorize<int>(out_values->dims());
L
Lijunhui 已提交
214 215 216
      int last_item = origin_dim.back();
      origin_dim.pop_back();
      origin_dim.push_back(last_item * 2);
217
      framework::DDim big_dim = phi::make_ddim(origin_dim);
L
Lijunhui 已提交
218

219
      real_values.mutable_data<phi::dtype::Real<T>>(big_dim,
220
                                                    context.GetPlace());
221
      real_vectors.mutable_data<phi::dtype::Real<T>>(x->dims(),
222
                                                     context.GetPlace());
L
Lijunhui 已提交
223

224
      ApplyEigKernel<DeviceContext, phi::dtype::Real<T>>(
225
          *x, &real_values, &real_vectors, context);
226 227 228 229 230

      auto& orig_dev_ctx = context.template device_context<DeviceContext>();
      auto& dev_ctx = static_cast<
          const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
          orig_dev_ctx);
L
Lijunhui 已提交
231 232

      // 1. extract real part & imag part from real_values
233 234 235 236
      Tensor real_part =
          phi::funcs::Slice<T>(dev_ctx, real_values, {-1}, {0}, {order});
      Tensor imag_part = phi::funcs::Slice<T>(dev_ctx, real_values, {-1},
                                              {order}, {order * 2});
L
Lijunhui 已提交
237 238

      // 2. construct complex values
239 240
      auto* real_part_data = real_part.data<phi::dtype::Real<T>>();
      auto* imag_part_data = imag_part.data<phi::dtype::Real<T>>();
L
Lijunhui 已提交
241 242 243
      int out_values_numel = out_values->numel();
      platform::ForRange<DeviceContext> for_range(
          context.template device_context<DeviceContext>(), out_values_numel);
244
      phi::funcs::RealImagToComplexFunctor<Tout> functor(
L
Lijunhui 已提交
245 246 247 248 249
          real_part_data, imag_part_data,
          out_values->mutable_data<Tout>(context.GetPlace()), out_values_numel);
      for_range(functor);

      // 3. construct complex vectors
250 251
      Tensor real_vector_trans =
          phi::TransposeLast2Dim<T>(dev_ctx, real_vectors);
L
Lijunhui 已提交
252 253
      Tensor out_vectors_trans;
      out_vectors_trans.mutable_data<Tout>(x->dims(), context.GetPlace());
254
      ConstructComplexVectors<phi::dtype::Real<T>, Tout>(
L
Lijunhui 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268
          &out_vectors_trans, *out_values, real_vector_trans, context,
          batch_count, order);
      TransposeTwoAxis<DeviceContext, Tout>(out_vectors_trans, out_vectors,
                                            x->dims().size() - 1,
                                            x->dims().size() - 2, context);
    } else {
      out_values->mutable_data<T>(context.GetPlace());
      out_vectors->mutable_data<T>(context.GetPlace());

      ApplyEigKernel<DeviceContext, T>(*x, out_values, out_vectors, context);
    }
  }
};

269
template <typename DeviceContext, typename T>
L
Lijunhui 已提交
270 271
void ComputeBackwardForComplexInput(
    const Tensor& V, const Tensor& L, const Tensor& gL, const Tensor& gV,
272
    T* x_grad_data, int batch_count, int order,
L
Lijunhui 已提交
273
    const framework::ExecutionContext& context) {
274 275 276 277 278 279 280 281 282 283 284 285 286 287
  auto& orig_dev_ctx = context.template device_context<DeviceContext>();
  auto& dev_ctx = static_cast<
      const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
      orig_dev_ctx);

  Tensor trans_v = phi::TransposeLast2Dim<T>(dev_ctx, V);
  Tensor Vh = phi::Conj<T>(dev_ctx, trans_v);
  Tensor Lconj = phi::Conj<T>(dev_ctx, L);
  Tensor Econj = phi::Subtract<T>(dev_ctx, phi::funcs::Unsqueeze(Lconj, -2),
                                  phi::funcs::Unsqueeze(Lconj, -1));
  Tensor VhgV = phi::Matmul<T>(dev_ctx, Vh, gV);
  Tensor diag_real = phi::Real<T>(dev_ctx, VhgV);
  Tensor diag_res = phi::funcs::BatchDiag<T>(dev_ctx, diag_real, batch_count);
  Tensor diag_unsqueezed = phi::funcs::Unsqueeze(diag_res, -2);
L
Lijunhui 已提交
288 289 290 291

  // turn diag_unsqueezed into complex
  auto numel = diag_unsqueezed.numel();
  Tensor diag_unsqueezed_complex;
292 293
  auto* data_diag_un = diag_unsqueezed.data<phi::dtype::Real<T>>();
  auto* data_diag_un_com = diag_unsqueezed_complex.mutable_data<T>(
L
Lijunhui 已提交
294
      diag_unsqueezed.dims(), context.GetPlace(),
295 296 297 298 299
      static_cast<size_t>(numel * sizeof(T)));

  platform::ForRange<DeviceContext> for_range(orig_dev_ctx, numel);
  phi::funcs::RealToComplexFunctor<T> functor(data_diag_un, data_diag_un_com,
                                              numel);
L
Lijunhui 已提交
300 301
  for_range(functor);
  // real tensor multiply complex tensor in broadcast manner
302 303 304
  Tensor res1 = phi::Multiply<T>(dev_ctx, V, diag_unsqueezed_complex);
  Tensor res2 = phi::Matmul<T>(dev_ctx, Vh, res1);
  Tensor result = phi::Subtract<T>(dev_ctx, VhgV, res2);
L
Lijunhui 已提交
305

306 307 308 309 310
  result.mutable_data<T>(V.dims(), context.GetPlace());
  result = phi::Divide<T>(dev_ctx, result, Econj);
  result =
      phi::funcs::DiagFill<T, T>(dev_ctx, order, order, order, 0, gL, result);
  Tensor rhs = phi::Matmul<T>(dev_ctx, result, Vh);
L
Lijunhui 已提交
311 312 313 314 315 316 317 318

  // solve linear system
  // solve(Vh, rhs, out, m, k)
  // Vh: matrix with shape [m,m]
  // rhs: rhs with shape [m,k]
  // x_grad: out
  int m = Vh.dims()[Vh.dims().size() - 1];
  int k = rhs.dims()[rhs.dims().size() - 1];
319 320 321 322
  auto* matrix_data = Vh.data<T>();
  auto* rhs_data = rhs.data<T>();
  math::SolveLinearSystem<T>(matrix_data, rhs_data, x_grad_data, m, k,
                             batch_count);
L
Lijunhui 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
}

template <typename DeviceContext, typename T, typename Tout>
class EigGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto& L = *context.Input<Tensor>("Eigenvalues");
    auto& V = *context.Input<Tensor>("Eigenvectors");
    auto& gL = *context.Input<Tensor>(framework::GradVarName("Eigenvalues"));
    auto& gV = *context.Input<Tensor>(framework::GradVarName("Eigenvectors"));

    auto& x_grad = *context.Output<Tensor>(framework::GradVarName("X"));
    auto* x_grad_data = x_grad.mutable_data<Tout>(context.GetPlace());

    auto& dims = V.dims();
    framework::DDim dim_origin = dims;
    int num_dims = dim_origin.size();
    int batch_count = BatchCount(V);
    const int order = dim_origin[num_dims - 1];

    ComputeBackwardForComplexInput<DeviceContext, Tout>(
        V, L, gL, gV, x_grad_data, batch_count, order, context);
  }
};

}  // namespace operators
}  // namespace paddle