c_allgather_op.cc 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_allgather_op.h"
16

17 18 19 20 21 22 23 24 25
#include <memory>

namespace paddle {
namespace operators {

class CAllGatherOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
M
MRXLT 已提交
26 27
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AllGather");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "AllGather");
28
    int nranks = ctx->Attrs().Get<int>("nranks");
M
MRXLT 已提交
29 30
    PADDLE_ENFORCE_GE(nranks, 2, platform::errors::InvalidArgument(
                                     "The value of nranks should be >=2."));
31 32
    framework::DDim dim = ctx->GetInputDim("X");
    dim[0] = dim[0] * nranks;
33
    if (dim[0] < 0) dim[0] = -1;
34 35 36 37 38 39 40 41 42 43 44
    ctx->SetOutputDim("Out", dim);
  }
};

class CAllGatherOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor) tensor to be allgather");
    AddOutput("Out", "(Tensor) the allgather result");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
45 46 47 48
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all gather.")
        .SetDefault("tag");
#endif
49 50 51 52 53 54 55
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddAttr<int>("nranks",
                 "Total trainer count of the distributed training job");
    AddComment(R"DOC(
56
CAllGather Operator
57 58
each rank receives the aggregation of data from all ranks in the order of the ranks

59
reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allgather
60 61 62 63
)DOC");
  }
};

H
hong 已提交
64 65
template <typename T>
class CAllGatherOpGradMaker : public framework::SingleGradOpMaker<T> {
66
 public:
H
hong 已提交
67
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
68 69

 protected:
70
  void Apply(GradOpPtr<T> retv) const override {
71
    retv->SetType("c_reducescatter");
H
hong 已提交
72 73 74
    retv->SetInput("X", this->OutputGrad("Out"));
    retv->SetOutput("Out", this->InputGrad("X"));
    retv->SetAttrMap(this->Attrs());
75 76 77 78 79 80 81 82 83
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

H
hong 已提交
84 85 86
REGISTER_OPERATOR(c_allgather, ops::CAllGatherOp,
                  ops::CAllGatherOpGradMaker<paddle::framework::OpDesc>,
                  ops::CAllGatherOpGradMaker<paddle::imperative::OpBase>,
87 88
                  ops::CAllGatherOpMaker);

89 90 91 92 93
REGISTER_OP_CPU_KERNEL(c_allgather, ops::CAllGatherOpCPUKernel<float>,
                       ops::CAllGatherOpCPUKernel<double>,
                       ops::CAllGatherOpCPUKernel<int>,
                       ops::CAllGatherOpCPUKernel<int64_t>,
                       ops::CAllGatherOpCPUKernel<plat::float16>);