c_allgather_op.cc 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_allgather_op.h"
16

17 18 19 20 21 22 23 24 25 26
#include <memory>

namespace paddle {
namespace operators {

class CAllGatherOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
28 29 30 31
    int nranks = ctx->Attrs().Get<int>("nranks");
    PADDLE_ENFORCE_GE(nranks, 2, "nranks should be >=2");
    framework::DDim dim = ctx->GetInputDim("X");
    dim[0] = dim[0] * nranks;
32
    if (dim[0] < 0) dim[0] = -1;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    ctx->SetOutputDim("Out", dim);
  }
};

class CAllGatherOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor) tensor to be allgather");
    AddOutput("Out", "(Tensor) the allgather result");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddAttr<int>("nranks",
                 "Total trainer count of the distributed training job");
    AddComment(R"DOC(
51
CAllGather Operator
52 53
each rank receives the aggregation of data from all ranks in the order of the ranks

54
reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allgather
55 56 57 58
)DOC");
  }
};

H
hong 已提交
59 60
template <typename T>
class CAllGatherOpGradMaker : public framework::SingleGradOpMaker<T> {
61
 public:
H
hong 已提交
62
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
63 64

 protected:
65
  void Apply(GradOpPtr<T> retv) const override {
66
    retv->SetType("c_reducescatter");
H
hong 已提交
67 68 69
    retv->SetInput("X", this->OutputGrad("Out"));
    retv->SetOutput("Out", this->InputGrad("X"));
    retv->SetAttrMap(this->Attrs());
70 71 72 73 74 75 76 77 78
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

H
hong 已提交
79 80 81
REGISTER_OPERATOR(c_allgather, ops::CAllGatherOp,
                  ops::CAllGatherOpGradMaker<paddle::framework::OpDesc>,
                  ops::CAllGatherOpGradMaker<paddle::imperative::OpBase>,
82 83
                  ops::CAllGatherOpMaker);

84 85 86 87 88
REGISTER_OP_CPU_KERNEL(c_allgather, ops::CAllGatherOpCPUKernel<float>,
                       ops::CAllGatherOpCPUKernel<double>,
                       ops::CAllGatherOpCPUKernel<int>,
                       ops::CAllGatherOpCPUKernel<int64_t>,
                       ops::CAllGatherOpCPUKernel<plat::float16>);