beam_search_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16
#include "paddle/fluid/operators/beam_search_op.h"

17 18
#include <string>
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
20 21 22 23

namespace paddle {
namespace operators {

K
ktlichkid 已提交
24
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yan Chunwei 已提交
25
 public:
Y
Yu Yang 已提交
26
  void Make() override {
Y
Yan Chunwei 已提交
27
    // inputs and outputs stored in proto
28 29 30 31
    AddInput("pre_ids",
             "(LoDTensor) The LoDTensor containing the selected ids at the "
             "previous step. It should be a tensor with shape (batch_size, 1) "
             "and lod `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at "
32
             "the first step.");
33 34 35 36 37
    AddInput("pre_scores",
             "(LoDTensor) The LoDTensor containing the accumulated "
             "scores corresponding to the selected ids at the previous step.");
    AddInput("ids",
             "(LoDTensor) The LoDTensor containing the candidates ids. Its "
38 39 40
             "shape should be (batch_size * beam_size, W). If not set, it will "
             "be calculated out according to Input(scores) in this operator.")
        .AsDispensable();
Y
Yan Chunwei 已提交
41
    AddInput("scores",
42 43 44 45 46 47 48
             "(LoDTensor) The LoDTensor containing the current scores "
             "corresponding to Input(ids). If Input(ids) is not nullptr, its "
             "shape is the same as that of Input(ids)."
             "If is_accumulated is true, Input(scores) is accumulated scores "
             "and will be used derectedly. Else, each score will be "
             "transformed to the log field and accumulate Input(pre_sores) "
             "first.");
Y
Yan Chunwei 已提交
49
    AddOutput("selected_ids",
50 51 52 53
              "A LodTensor that stores the IDs selected by beam search.");
    AddOutput("selected_scores",
              "A LoDTensor containing the accumulated scores corresponding to "
              "Output(selected_ids).");
54
    AddOutput("parent_idx",
T
tianshuo78520a 已提交
55
              "A Tensor preserving the selected_ids' parent index in pre_ids.")
56
        .AsDispensable();
Y
Yan Chunwei 已提交
57 58 59 60 61 62

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
63 64 65
    AddAttr<bool>("is_accumulated",
                  "Whether the Input(scores) is accumulated scores.")
        .SetDefault(true);
Y
Yan Chunwei 已提交
66

67
    AddComment(R"DOC(
M
minqiyang 已提交
68
This operator does the search in beams for one time step.
69 70 71 72 73 74 75 76 77 78 79 80 81
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
from the computation cell. Additionally, Input(pre_ids) and Input(pre_scores)
are the output of beam_search at previous step, they are needed for special use
to handle ended candidate translations. The paths linking prefixes and selected
candidates are organized and reserved in lod.

Note that the Input(scores) passed in should be accumulated scores, and
length penalty should be done with extra operators before calculating the
accumulated scores if needed, also suggest finding top-K before it and
using the top-K candidates following.
)DOC");
Y
Yan Chunwei 已提交
82 83 84
  }
};

K
ktlichkid 已提交
85
class BeamSearchOp : public framework::OperatorWithKernel {
K
ktlichkid 已提交
86 87
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
K
ktlichkid 已提交
88

K
ktlichkid 已提交
89
  void InferShape(framework::InferShapeContext *ctx) const override {
K
ktlichkid 已提交
90
    for (const std::string &arg :
91
         std::vector<std::string>({"pre_ids", "scores"})) {
92
      OP_INOUT_CHECK(ctx->HasInput(arg), "Input", arg, "BeamSeach");
K
ktlichkid 已提交
93 94 95
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
96
      OP_INOUT_CHECK(ctx->HasOutput(arg), "Output", arg, "BeamSeach");
K
ktlichkid 已提交
97
    }
98 99 100 101
    auto id_dims = ctx->GetInputDim("pre_ids");
    ctx->SetOutputDim("selected_scores", ctx->GetInputDim("pre_scores"));
    ctx->SetOutputDim("selected_ids", id_dims);
    ctx->SetOutputDim("parent_idx", {id_dims[0]});
102 103
  }

104
 protected:
105 106
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
107 108 109 110 111 112 113
    auto *scores = ctx.Input<framework::LoDTensor>("scores");
    size_t level = ctx.Attr<int>("level");
    size_t batch_size = scores->lod()[level].size() - 1;
    // The current CUDA kernel only support cases with batch_size < 4.
    // Compute on CPU for cases with batch_size > 4.
    if (batch_size <= 4) {
      return framework::OpKernelType(
114 115
          OperatorWithKernel::IndicateVarDataType(ctx, "pre_ids"),
          ctx.GetPlace());
116 117
    } else {
      return framework::OpKernelType(
118
          OperatorWithKernel::IndicateVarDataType(ctx, "pre_ids"),
119 120
          platform::CPUPlace());
    }
K
ktlichkid 已提交
121 122 123
  }
};

Q
Qiao Longfei 已提交
124 125
class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
126
  void operator()(framework::InferVarTypeContext *ctx) const override {
127 128 129 130
    ctx->SetOutputType("selected_ids", framework::proto::VarType::LOD_TENSOR,
                       framework::ALL_ELEMENTS);
    ctx->SetOutputType("selected_scores", framework::proto::VarType::LOD_TENSOR,
                       framework::ALL_ELEMENTS);
Q
Qiao Longfei 已提交
131 132
  }
};
K
ktlichkid 已提交
133

Y
Yan Chunwei 已提交
134 135
}  // namespace operators
}  // namespace paddle
K
ktlichkid 已提交
136

K
ktlichkid 已提交
137
namespace ops = paddle::operators;
K
ktlichkid 已提交
138 139 140

REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
                  ops::BeamSearchInferVarType);
K
ktlichkid 已提交
141 142 143
REGISTER_OP_CPU_KERNEL(
    beam_search,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
K
ktlichkid 已提交
144 145 146
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);