zero_copy_tensor.cc 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/convert_utils.h"
16
#include "paddle/fluid/framework/data_layout_transform.h"
17 18 19
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
W
Wilber 已提交
20
#include "paddle/fluid/inference/api/paddle_tensor.h"
N
nhzlx 已提交
21
#include "paddle/fluid/memory/memcpy.h"
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/platform/float16.h"
24
#include "paddle/phi/core/allocator.h"
25
#ifdef PADDLE_WITH_ONNXRUNTIME
H
heliqi 已提交
26 27
#include "onnxruntime_c_api.h"    // NOLINT
#include "onnxruntime_cxx_api.h"  // NOLINT
28
#endif
29

30
namespace paddle_infer {
31

32 33
using float16 = paddle::platform::float16;

34
void Tensor::Reshape(const std::vector<int> &shape) {
35 36 37 38 39 40 41
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    shape_.assign(shape.begin(), shape.end());
    return;
  }
#endif

W
Wilber 已提交
42 43
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
44
      paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
45 46 47
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
  PADDLE_ENFORCE_EQ(input_or_output_, true,
48
                    paddle::platform::errors::PermissionDenied(
W
Wilber 已提交
49
                        "Can't reshape the output tensor, it is readonly"));
50
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
51
  auto *var = scope->FindVar(name_);
W
Wilber 已提交
52
  PADDLE_ENFORCE_NOT_NULL(
53
      var, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
54
               "No tensor called [%s] in the runtime scope", name_));
55
  auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
56
  tensor->Resize(phi::make_ddim(shape));
57 58
}

S
Steffy-zxf 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
void Tensor::ReshapeStrings(const size_t &shape) {
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
      paddle::platform::errors::PreconditionNotMet(
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
  PADDLE_ENFORCE_EQ(input_or_output_, true,
                    paddle::platform::errors::PermissionDenied(
                        "Can't reshape the output tensor, it is readonly"));
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
  auto *var = scope->FindVar(name_);
  PADDLE_ENFORCE_NOT_NULL(
      var, paddle::platform::errors::PreconditionNotMet(
               "No tensor called [%s] in the runtime scope", name_));
  paddle_infer::Strings *tensor = var->GetMutable<paddle_infer::Strings>();
  tensor->resize(shape);
}

#define EAGER_GET_TENSOR(tensor_type)    \
  if (!tensor_) {                        \
    tensor_ = FindTensor<tensor_type>(); \
  }                                      \
  auto *tensor = static_cast<tensor_type *>(tensor_);
82

83
template <typename T>
84
T *Tensor::mutable_data(PlaceType place) {
S
Steffy-zxf 已提交
85
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
86 87
  PADDLE_ENFORCE_GT(
      tensor->numel(), 0,
88 89
      paddle::platform::errors::PreconditionNotMet(
          "You should call Tensor::Reshape(const std::vector<int> "
W
Wilber 已提交
90 91
          "&shape)"
          "function before retrieving mutable_data from input tensor."));
92
  switch (static_cast<int>(place)) {
93 94
    case static_cast<int>(PlaceType::kCPU): {
      return tensor->mutable_data<T>(paddle::platform::CPUPlace());
95
    }
96 97 98 99 100
    case static_cast<int>(PlaceType::kGPU): {
      return tensor->mutable_data<T>(paddle::platform::CUDAPlace(device_));
    }
    case static_cast<int>(PlaceType::kXPU): {
      return tensor->mutable_data<T>(paddle::platform::XPUPlace(device_));
101
    }
102 103 104
    case static_cast<int>(PlaceType::kNPU): {
      return tensor->mutable_data<T>(paddle::platform::NPUPlace(device_));
    }
105
    default:
106
      PADDLE_THROW(paddle::platform::errors::Unavailable(
107 108
          "Only CPU / CUDA / XPU / NPU places is supported. The place `%d` is "
          "not supported.",
109
          static_cast<int>(place)));
110 111 112 113 114 115
      break;
  }
  return nullptr;
}

template <typename T>
116
T *Tensor::data(PlaceType *place, int *size) const {
S
Steffy-zxf 已提交
117
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
118 119
  auto *res = tensor->data<T>();

120 121 122 123 124 125
  if (paddle::platform::is_cpu_place(tensor->place())) {
    *place = PlaceType::kCPU;
  } else if (paddle::platform::is_gpu_place(tensor->place())) {
    *place = PlaceType::kGPU;
  } else if (paddle::platform::is_xpu_place(tensor->place())) {
    *place = PlaceType::kXPU;
126 127
  } else if (paddle::platform::is_npu_place(tensor->place())) {
    *place = PlaceType::kNPU;
128
  } else {
129
    *place = PlaceType::kUNK;
130 131 132 133 134 135
  }

  *size = tensor->numel();
  return res;
}

136
DataType Tensor::type() const {
137 138 139 140 141
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    return dtype_;
  }
#endif
S
Steffy-zxf 已提交
142
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
143
  auto type = paddle::framework::TransToProtoVarType(tensor->dtype());
144 145
  if (type == paddle::framework::proto::VarType::FP32) {
    return DataType::FLOAT32;
146 147
  } else if (type == paddle::framework::proto::VarType::FP16) {
    return DataType::FLOAT16;
148 149 150 151 152 153
  } else if (type == paddle::framework::proto::VarType::INT64) {
    return DataType::INT64;
  } else if (type == paddle::framework::proto::VarType::INT32) {
    return DataType::INT32;
  } else if (type == paddle::framework::proto::VarType::UINT8) {
    return DataType::UINT8;
154 155
  } else if (type == paddle::framework::proto::VarType::INT8) {
    return DataType::INT8;
156
  }
157
  return DataType::FLOAT32;
158 159
}

160 161
PlaceType Tensor::place() const { return place_; }

N
nhzlx 已提交
162
template <typename T>
163
void Tensor::CopyFromCpu(const T *data) {
164 165 166 167 168 169 170
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    ORTCopyFromCpu<T>(data);
    return;
  }
#endif

S
Steffy-zxf 已提交
171
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
W
Wilber 已提交
172
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
173 174
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
W
Wilber 已提交
175 176
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
N
nhzlx 已提交
177 178
  size_t ele_size = tensor->numel() * sizeof(T);

179 180
  if (place_ == PlaceType::kCPU) {
    auto *t_data = tensor->mutable_data<T>(paddle::platform::CPUPlace());
N
nhzlx 已提交
181
    std::memcpy(static_cast<void *>(t_data), data, ele_size);
182
  } else if (place_ == PlaceType::kGPU) {
183
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
184 185 186
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::CUDAPlace gpu_place(device_);
N
nhzlx 已提交
187
    auto *t_data = tensor->mutable_data<T>(gpu_place);
188 189
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
N
nhzlx 已提交
190

191 192 193
    paddle::memory::Copy(gpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
N
nhzlx 已提交
194
#else
195 196 197
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
N
nhzlx 已提交
198
#endif
199
  } else if (place_ == PlaceType::kXPU) {
200
#ifdef PADDLE_WITH_XPU
201
    paddle::platform::XPUPlace xpu_place(device_);
202
    auto *t_data = tensor->mutable_data<T>(xpu_place);
203 204
    paddle::memory::Copy(xpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size);
205
#else
206 207 208
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with XPU place because paddle is not compiled "
        "with XPU."));
W
Wilber 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#endif
  } else if (place_ == PlaceType::kNPU) {
#ifdef PADDLE_WITH_ASCEND_CL
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::NPUPlace npu_place(device_);
    auto *t_data = tensor->mutable_data<T>(npu_place);
    auto *dev_ctx = static_cast<const paddle::platform::NPUDeviceContext *>(
        pool.Get(npu_place));
    paddle::memory::Copy(npu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with NPU place because paddle is not compiled "
        "with NPU."));
225 226
#endif
  } else {
227 228 229 230 231 232 233 234 235 236 237 238 239 240
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_type_id =
        static_cast<size_t>(place_) - static_cast<size_t>(PlaceType::kCUSTOM);
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::CustomPlace custom_place(
        phi::GetGlobalDeviceType(device_type_id), device_);
    auto *t_data = tensor->mutable_data<T>(custom_place);
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    paddle::memory::Copy(custom_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
#else
241
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
242
        "The analysis predictor supports CPU, GPU, NPU and XPU now."));
243
#endif
N
nhzlx 已提交
244 245 246
  }
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
template <typename T>
struct DataTypeInfo;

template <>
struct DataTypeInfo<float> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::FLOAT32;
};

template <>
struct DataTypeInfo<float16> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::FLOAT16;
};

template <>
struct DataTypeInfo<int64_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::INT64;
};

template <>
struct DataTypeInfo<int8_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::INT8;
};

template <>
struct DataTypeInfo<uint8_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::UINT8;
};

template <>
struct DataTypeInfo<int32_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::INT32;
};

paddle::experimental::DataLayout LayoutConvert(DataLayout layout) {
  PADDLE_ENFORCE_EQ(
      layout, DataLayout::kNCHW,
      paddle::platform::errors::InvalidArgument("Only NCHW is supported now."));
  return paddle::experimental::DataLayout::NCHW;
}

template <typename T>
void Tensor::ShareExternalData(const T *data, const std::vector<int> &shape,
                               PlaceType place, DataLayout layout) {
  EAGER_GET_TENSOR(paddle::framework::LoDTensor)
  size_t size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  phi::DenseTensorMeta meta(DataTypeInfo<T>().TYPE, phi::make_ddim(shape),
                            LayoutConvert(layout));
  if (place == PlaceType::kCPU) {
    phi::DenseTensor dtensor(
        std::make_shared<phi::Allocation>(const_cast<T *>(data), size,
                                          paddle::platform::CPUPlace()),
        meta);
    *tensor = std::move(dtensor);
  } else if (place == PlaceType::kGPU) {
    phi::DenseTensor dtensor(
        std::make_shared<phi::Allocation>(const_cast<T *>(data), size,
                                          paddle::platform::CUDAPlace(device_)),
        meta);
    *tensor = std::move(dtensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "PlaceType must be PlaceType::kCPU or PlaceType::kGPU."));
  }
}

S
Steffy-zxf 已提交
314 315 316 317 318 319 320 321 322 323
void Tensor::CopyStringsFromCpu(const paddle_infer::Strings *data) {
  EAGER_GET_TENSOR(paddle_infer::Strings);
  PADDLE_ENFORCE_GE(tensor->size(), 0,
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
                        "std::size_t &shape)function before copying"
                        "the string data from cpu."));
  *tensor = *data;
}

N
nhzlx 已提交
324
template <typename T>
325 326
void Tensor::CopyToCpuImpl(T *data, void *exec_stream, CallbackFunc cb,
                           void *cb_params) const {
S
Steffy-zxf 已提交
327
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
N
nhzlx 已提交
328 329 330 331
  auto ele_num = tensor->numel();
  auto *t_data = tensor->data<T>();
  auto t_place = tensor->place();

332
  paddle::framework::Tensor out;
333 334 335 336
  auto mem_allocation =
      std::make_shared<paddle::memory::allocation::Allocation>(
          static_cast<void *>(data), ele_num * sizeof(T),
          paddle::platform::CPUPlace());
337 338
  out.ResetHolder(mem_allocation);

339
  if (paddle::platform::is_cpu_place(t_place)) {
340 341 342 343 344 345 346 347 348
#ifdef PADDLE_WITH_MKLDNN
    if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN)
      paddle::framework::innerTransDataLayoutFromMKLDNN(
          tensor->layout(), paddle::platform::MKLDNNDeviceContext::tls()
                                .get_cur_paddle_data_layout(),
          *tensor, &out, paddle::platform::CPUPlace(), true);
    else
      std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
N
nhzlx 已提交
349
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
J
jianghaicheng 已提交
350 351 352 353 354 355 356 357
#endif
  } else if (paddle::platform::is_ipu_place(t_place)) {
#ifdef PADDLE_WITH_IPU
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with IPU place because paddle is not compiled "
        "with IPU."));
358
#endif
359
  } else if (place_ == PlaceType::kGPU) {
360
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
361 362
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
363
    auto gpu_place = t_place;
364 365 366 367 368
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), gpu_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
369 370 371
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
372 373 374 375 376 377 378 379 380 381
    // async, return stream
    if (nullptr != exec_stream) {
      *(static_cast<cudaStream_t *>(exec_stream)) = dev_ctx->stream();
      // async with callback
    } else if (cb) {
      cudaLaunchHostFunc(dev_ctx->stream(), cb, cb_params);
      // sync
    } else {
      cudaStreamSynchronize(dev_ctx->stream());
    }
382
#endif
N
nhzlx 已提交
383
#else
384 385 386
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
N
nhzlx 已提交
387
#endif
388
  } else if (place_ == PlaceType::kXPU) {
389
#ifdef PADDLE_WITH_XPU
390
    auto xpu_place = t_place;
391 392 393
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), xpu_place, t_data,
                         ele_num * sizeof(T));
394
#else
395 396 397
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with XPU place because paddle is not compiled "
        "with XPU."));
W
Wilber 已提交
398 399 400 401 402
#endif
  } else if (place_ == PlaceType::kNPU) {
#ifdef PADDLE_WITH_ASCEND_CL
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
403
    auto npu_place = t_place;
W
Wilber 已提交
404 405 406 407 408
    auto *dev_ctx = static_cast<const paddle::platform::NPUDeviceContext *>(
        pool.Get(npu_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), npu_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
409
    paddle::platform::NPUStreamSync(dev_ctx->stream());
W
Wilber 已提交
410 411 412 413
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with NPU place because paddle is not compiled "
        "with NPU."));
414 415
#endif
  } else {
416 417 418 419 420 421 422 423 424 425 426
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto custom_place = t_place;
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), custom_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
// TODO(wangran16): sync_stream
#else
427
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
428
        "The analysis predictor supports CPU, GPU, NPU and XPU now."));
429
#endif
N
nhzlx 已提交
430 431
  }
}
432 433 434

template <typename T>
void Tensor::CopyToCpu(T *data) const {
435 436 437 438 439 440 441
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    ORTCopyToCpu<T>(data);
    return;
  }
#endif

442 443 444 445 446 447 448 449 450 451 452 453 454
  CopyToCpuImpl<T>(data, nullptr, nullptr, nullptr);
}

template <typename T>
void Tensor::CopyToCpuAsync(T *data, void *exec_stream) const {
  CopyToCpuImpl<T>(data, exec_stream, nullptr, nullptr);
}

template <typename T>
void Tensor::CopyToCpuAsync(T *data, CallbackFunc cb, void *cb_params) const {
  CopyToCpuImpl<T>(data, nullptr, cb, cb_params);
}

455 456 457 458 459
template PD_INFER_DECL void Tensor::CopyFromCpu<float>(const float *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int64_t>(const int64_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int32_t>(const int32_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<uint8_t>(const uint8_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int8_t>(const int8_t *data);
460
template PD_INFER_DECL void Tensor::CopyFromCpu<float16>(const float16 *data);
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
template PD_INFER_DECL void Tensor::ShareExternalData<float>(
    const float *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<int64_t>(
    const int64_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<int32_t>(
    const int32_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<uint8_t>(
    const uint8_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<int8_t>(
    const int8_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<float16>(
    const float16 *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
template PD_INFER_DECL void Tensor::CopyToCpu<float>(float *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int64_t>(int64_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int32_t>(int32_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<uint8_t>(uint8_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int8_t>(int8_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<float16>(float16 *data) const;

template PD_INFER_DECL void Tensor::CopyToCpuImpl<float>(float *data,
                                                         void *exec_stream,
                                                         CallbackFunc cb,
                                                         void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<int64_t>(
    int64_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<int32_t>(
    int32_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<uint8_t>(
    uint8_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<int8_t>(
    int8_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<float16>(
    float16 *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;

template PD_INFER_DECL void Tensor::CopyToCpuAsync<float>(
    float *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int64_t>(
    int64_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int32_t>(
    int32_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<uint8_t>(
    uint8_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int8_t>(
    int8_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<float16>(
    float16 *data, void *exec_stream) const;

template PD_INFER_DECL void Tensor::CopyToCpuAsync<float>(
    float *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int64_t>(
    int64_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int32_t>(
    int32_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<uint8_t>(
    uint8_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int8_t>(
    int8_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<float16>(
    float16 *data, CallbackFunc cb, void *cb_params) const;
528

529 530 531 532 533 534 535 536 537 538
template PD_INFER_DECL float *Tensor::data<float>(PlaceType *place,
                                                  int *size) const;
template PD_INFER_DECL int64_t *Tensor::data<int64_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL int32_t *Tensor::data<int32_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL uint8_t *Tensor::data<uint8_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL int8_t *Tensor::data<int8_t>(PlaceType *place,
                                                    int *size) const;
539 540
template PD_INFER_DECL float16 *Tensor::data<float16>(PlaceType *place,
                                                      int *size) const;
541

542 543 544 545 546
template PD_INFER_DECL float *Tensor::mutable_data<float>(PlaceType place);
template PD_INFER_DECL int64_t *Tensor::mutable_data<int64_t>(PlaceType place);
template PD_INFER_DECL int32_t *Tensor::mutable_data<int32_t>(PlaceType place);
template PD_INFER_DECL uint8_t *Tensor::mutable_data<uint8_t>(PlaceType place);
template PD_INFER_DECL int8_t *Tensor::mutable_data<int8_t>(PlaceType place);
547
template PD_INFER_DECL float16 *Tensor::mutable_data<float16>(PlaceType place);
548

549
Tensor::Tensor(void *scope) : scope_{scope} {}
550

S
Steffy-zxf 已提交
551
template <typename T>
552
void *Tensor::FindTensor() const {
W
Wilber 已提交
553 554
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
555
      paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
556 557
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
558
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
559
  auto *var = scope->FindVar(name_);
W
Wilber 已提交
560
  PADDLE_ENFORCE_NOT_NULL(
561
      var, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
562
               "No tensor called [%s] in the runtime scope", name_));
S
Steffy-zxf 已提交
563
  auto *tensor = var->GetMutable<T>();
564 565 566
  return tensor;
}

567
std::vector<int> Tensor::shape() const {
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    std::vector<int> shape;
    // input handle
    if (idx_ < 0) {
      shape.assign(shape_.begin(), shape_.end());
    } else {  // output handle
      auto binding = binding_.lock();
      PADDLE_ENFORCE_NOT_NULL(binding,
                              paddle::platform::errors::PreconditionNotMet(
                                  "output tensor [%s] no binding ptr", name_));
      std::vector<Ort::Value> outputs = binding->GetOutputValues();
      Ort::Value &value = outputs[idx_];
      auto info = value.GetTensorTypeAndShapeInfo();
      auto ort_shape = info.GetShape();
      shape.assign(ort_shape.begin(), ort_shape.end());
    }
    return shape;
  }
#endif
S
Steffy-zxf 已提交
588
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
W
Wilber 已提交
589
  PADDLE_ENFORCE_NOT_NULL(
590
      tensor_, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
591
                   "Not found tensor called %s in the scope", name_));
W
wenbin 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
// mkldnn may does layout transform internally, so need to reorder before
// return
#ifdef PADDLE_WITH_MKLDNN
  if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN) {
    paddle::framework::DataLayout out_layout =
        paddle::platform::MKLDNNDeviceContext::tls()
            .get_cur_paddle_data_layout();
    // Set default as NCHW in case not specified
    out_layout = out_layout == paddle::framework::DataLayout::kAnyLayout
                     ? paddle::framework::DataLayout::kNCHW
                     : out_layout;
    // In these data layouts, channel dimension is either on 2nd position: nChw
    // or
    // at last nhwC, so for dim==2 these layouts are the same and nothing should
    // be done. Similarly for dim==1 when you have just one possible
    // combination.
608
    if (tensor->dims().size() < 3) return phi::vectorize<int>(tensor->dims());
609 610
    if (out_layout == paddle::framework::DataLayout::kNHWC ||
        out_layout == paddle::framework::DataLayout::kNDHWC) {
611
      auto dims = phi::vectorize<int>(tensor->dims());
W
wenbin 已提交
612 613 614
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      return dims;
    } else {
615
      return phi::vectorize<int>(tensor->dims());
W
wenbin 已提交
616 617 618
    }
  }
#endif
619
  return phi::vectorize<int>(tensor->dims());
620 621
}

622
void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
S
Steffy-zxf 已提交
623
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
624
  paddle::framework::LoD lod;
625 626 627 628 629 630
  for (auto &level : x) {
    lod.emplace_back(level);
  }
  tensor->set_lod(lod);
}

631
std::vector<std::vector<size_t>> Tensor::lod() const {
S
Steffy-zxf 已提交
632
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
633 634 635 636 637 638 639
  std::vector<std::vector<size_t>> res;
  for (auto &level : tensor->lod()) {
    res.emplace_back(level);
  }
  return res;
}

640 641 642 643 644 645 646 647 648
void Tensor::SetName(const std::string &name) { name_ = name; }

const std::string &Tensor::name() const { return name_; }

void Tensor::SetPlace(PlaceType place, int device) {
  place_ = place;
  device_ = device;
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
#ifdef PADDLE_WITH_ONNXRUNTIME
void Tensor::SetOrtMark(bool is_ort_tensor) { is_ort_tensor_ = is_ort_tensor; }

void Tensor::SetOrtBinding(const std::shared_ptr<Ort::IoBinding> binding) {
  binding_ = binding;
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, float *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<float>(memory_info, data, size, shape,
                                         shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, int64_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<int64_t>(memory_info, data, size, shape,
                                           shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, int32_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<int32_t>(memory_info, data, size, shape,
                                           shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, uint8_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<uint8_t>(memory_info, data, size, shape,
                                           shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, int8_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<int8_t>(memory_info, data, size, shape,
                                          shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, float16 *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor(memory_info, static_cast<void *>(data),
                                  size * sizeof(float16), shape, shape_len,
                                  ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16);
}

template <typename T>
void Tensor::ORTCopyFromCpu(const T *data) {
  auto binding = binding_.lock();
  PADDLE_ENFORCE_NOT_NULL(binding,
                          paddle::platform::errors::PreconditionNotMet(
                              "input tensor [%s] no binding ptr", name_));
  const char *device_name = place_ == PlaceType::kCPU ? "Cpu" : "Cuda";
  Ort::MemoryInfo memory_info(device_name, OrtDeviceAllocator, device_,
                              OrtMemTypeDefault);
  size_t size = std::accumulate(begin(shape_), end(shape_), 1UL,
                                std::multiplies<size_t>());
H
heliqi 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  size_t buffer_size = size * sizeof(T);
  if (buffer_size > buffer_.size()) {
    buffer_.resize(buffer_size);
  }
  std::memcpy(static_cast<void *>(buffer_.data()), data, buffer_size);

  auto onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
  if (std::is_same<T, float>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
  } else if (std::is_same<T, double>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE;
  } else if (std::is_same<T, int64_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
  } else if (std::is_same<T, int32_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32;
  } else if (std::is_same<T, uint8_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8;
  } else if (std::is_same<T, int8_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8;
  } else if (std::is_same<T, float16>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16;
  }

  if (onnx_dtype == ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Found undefined data type for onnxruntime, only supports "
        "float16/float32/float64/int8/uint8/int32/int64."));
  }

  auto ort_value =
      Ort::Value::CreateTensor(memory_info, buffer_.data(), buffer_size,
                               shape_.data(), shape_.size(), onnx_dtype);

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  binding->BindInput(name_.c_str(), ort_value);
}

template <typename T>
void Tensor::ORTCopyToCpu(T *data) const {
  auto binding = binding_.lock();
  PADDLE_ENFORCE_NOT_NULL(binding,
                          paddle::platform::errors::PreconditionNotMet(
                              "output tensor [%s] no binding ptr", name_));
  std::vector<Ort::Value> outputs = binding->GetOutputValues();
  Ort::Value &value = outputs[idx_];
  auto info = value.GetTensorTypeAndShapeInfo();
  size_t size = info.GetElementCount() * sizeof(T);

  if (place_ == PlaceType::kCPU) {
    std::memcpy(static_cast<void *>(data), value.GetTensorData<void *>(), size);
  } else {
H
heliqi 已提交
754 755 756
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "CopyToCpu error.The current ONNXRuntime backend doesn't support "
        "GPU."));
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  }
}

template void Tensor::ORTCopyFromCpu<float>(const float *data);
template void Tensor::ORTCopyFromCpu<int64_t>(const int64_t *data);
template void Tensor::ORTCopyFromCpu<int32_t>(const int32_t *data);
template void Tensor::ORTCopyFromCpu<uint8_t>(const uint8_t *data);
template void Tensor::ORTCopyFromCpu<int8_t>(const int8_t *data);
template void Tensor::ORTCopyFromCpu<float16>(const float16 *data);

template void Tensor::ORTCopyToCpu<float>(float *data) const;
template void Tensor::ORTCopyToCpu<int32_t>(int32_t *data) const;
template void Tensor::ORTCopyToCpu<uint8_t>(uint8_t *data) const;
template void Tensor::ORTCopyToCpu<int8_t>(int8_t *data) const;
template void Tensor::ORTCopyToCpu<float16>(float16 *data) const;
#endif

W
Wilber 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
namespace experimental {
template <typename T>
void InternalUtils::CopyFromCpuWithIoStream(paddle_infer::Tensor *t,
                                            const T *data,
                                            cudaStream_t stream) {
  if (t->tensor_ == nullptr) {
    PADDLE_ENFORCE_EQ(
        t->name_.empty(), false,
        paddle::platform::errors::PreconditionNotMet(
            "Need to SetName first, so that the corresponding tensor can "
            "be retrieved."));
    auto *scope = static_cast<paddle::framework::Scope *>(t->scope_);
    auto *var = scope->FindVar(t->name_);
    PADDLE_ENFORCE_NOT_NULL(
        var, paddle::platform::errors::PreconditionNotMet(
                 "No tensor called [%s] in the runtime scope", t->name_));
    auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
    t->tensor_ = tensor;
  }

  auto *tensor = static_cast<paddle::framework::LoDTensor *>(t->tensor_);
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
  size_t ele_size = tensor->numel() * sizeof(T);
  if (t->place_ == PlaceType::kCPU) {
    auto *t_data = tensor->mutable_data<T>(paddle::platform::CPUPlace());
    std::memcpy(static_cast<void *>(t_data), data, ele_size);
  } else if (t->place_ == PlaceType::kGPU) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::CUDAPlace gpu_place(t->device_);
    auto *t_data = tensor->mutable_data<T>(gpu_place);
    paddle::memory::Copy(gpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size, stream);
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "CopyFromCpuWithIoStream only supports CPU and GPU now."));
  }
}

template <typename T>
void InternalUtils::CopyToCpuWithIoStream(paddle_infer::Tensor *t, T *data,
                                          cudaStream_t stream) {
  if (t->tensor_ == nullptr) {
    PADDLE_ENFORCE_EQ(
        t->name_.empty(), false,
        paddle::platform::errors::PreconditionNotMet(
            "Need to SetName first, so that the corresponding tensor can "
            "be retrieved."));
    auto *scope = static_cast<paddle::framework::Scope *>(t->scope_);
    auto *var = scope->FindVar(t->name_);
    PADDLE_ENFORCE_NOT_NULL(
        var, paddle::platform::errors::PreconditionNotMet(
                 "No tensor called [%s] in the runtime scope", t->name_));
    auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
    t->tensor_ = tensor;
  }

  auto *tensor = static_cast<paddle::framework::LoDTensor *>(t->tensor_);
  auto ele_num = tensor->numel();
  auto *t_data = tensor->data<T>();
  auto t_place = tensor->place();

  paddle::framework::Tensor out;
  auto mem_allocation =
      std::make_shared<paddle::memory::allocation::Allocation>(
          static_cast<void *>(data), ele_num * sizeof(T),
          paddle::platform::CPUPlace());
  out.ResetHolder(mem_allocation);

  if (paddle::platform::is_cpu_place(t_place)) {
#ifdef PADDLE_WITH_MKLDNN
    if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN)
      paddle::framework::innerTransDataLayoutFromMKLDNN(
          tensor->layout(), paddle::platform::MKLDNNDeviceContext::tls()
                                .get_cur_paddle_data_layout(),
          *tensor, &out, paddle::platform::CPUPlace(), true);
    else
      std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#endif
  } else if (t->place_ == PlaceType::kGPU) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), t_place, t_data,
                         ele_num * sizeof(T), stream);
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "CopyToCpuWithIoStream only supports CPU and GPU now."));
  }
}

template void InternalUtils::CopyFromCpuWithIoStream<float>(
    paddle_infer::Tensor *t, const float *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<int64_t>(
    paddle_infer::Tensor *t, const int64_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<int32_t>(
    paddle_infer::Tensor *t, const int32_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<uint8_t>(
    paddle_infer::Tensor *t, const uint8_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<int8_t>(
    paddle_infer::Tensor *t, const int8_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<float16>(
    paddle_infer::Tensor *t, const float16 *data, cudaStream_t stream);

template void InternalUtils::CopyToCpuWithIoStream<float>(
    paddle_infer::Tensor *t, float *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<int64_t>(
    paddle_infer::Tensor *t, int64_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<int32_t>(
    paddle_infer::Tensor *t, int32_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<uint8_t>(
    paddle_infer::Tensor *t, uint8_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<int8_t>(
    paddle_infer::Tensor *t, int8_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<float16>(
    paddle_infer::Tensor *t, float16 *data, cudaStream_t stream);

}  // namespace experimental

907
}  // namespace paddle_infer